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Abstract

In classical complex analysis, the Schwarzian derivative has played a key role as a

means of characterizing sufficient conditions for the univalence of a locally injective

analytic map.

Osgood and Stowe have recently introduced a notion of Schwarzian derivative

for conformal local diffeomorphisms of Riemannian manifolds which generalizes the

classical operator in the plane. Using their new definition, they derive a sufficient

condition for a conformal local diffeomorphism ψ of a Riemannian n-manifold (M, g)

to the standard sphere (Sn, g1) to be injective (O-S). By setting M = D the unit disc

in the plane and g alternately the euclidean and the hyperbolic metric, Osgood and

Stowe obtain from their result two classical criteria of Nehari.

During the past two years I have studied O-S and its implications. By considering

other kind of metrics in D, I derive from O-S most of the known and some new

univalence criteria that involve either the Schwarzian derivative of ψ or the quantity

ψ′′/ψ′. In particular, a recent criterion of Epstein can be obtained in this fashion.

It is often the case that a stronger form of a given univalence criterion serves

further as a condition that guarantees a quasiconformal extension to the entire plane.

With the aid of Epstein’s techniques for constructing reflections in hyperbolic n+ 1-

space, we show that indeed a strong form of O-S implies the existence of a quasicon-

formal reflection on Sn, which fixes pointwise the boundary of the image ψ(M). We

follow Ahlfors in his definition of quasiconformality in higher dimensions. The main

point in proving this theorem, is that the quasiconformal distortion of the reflection

which is determined by the support function ρ defined on ψ(M) by e2ρg1 = (ψ−1)∗(g)

can be expressed naturally in terms of the quantities in O-S.

iv



An unexpected phenomenon is that the existence of a map ψ satisfying the strong

form of O-S implies that M is simply-connected. This has the interesting consequence

that certain types of univalence criteria (which do hold on simply-connected domains)

cannot exist on domains of higher connectivity. By means of conformal invariance,

we restate the strong form of O-S as a (sharp) sufficient condition for a domain on

the Sn to be simply-connected.
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Chapter 1

Introduction

1.1 Motivation of the problem

In classical complex analysis, the Schwarzian derivative has played a key role as

a means of characterizing necessary and sufficient conditions for the univalence of a

locally injective analytic map. In the unit disc, there is mainly one necessary condition

for global univalence, proved originally by Kraus in 1932 [32] and commonly attributed

to Nehari, who discovered it independently in 1949 [36]. His proof uses the so called

“area theorem”, or equivalently, coefficient estimates for the power series expansion in

the disc of the given analytic map. Another proof of this result was given by Bergman

and Schiffer using the theory of kernel functions and conformal mappings [14]. Such an

approach had the advantage that it could be applied to obtain similar results for other

simply- and even multiply-connected domains. On the other hand, for the sufficiency

of univalence of analytic maps defined say in the unit disc, many apparently different

criteria have been established. Since in many cases their proofs have relied on similar

arguments, there has been an interest in deriving general criteria which comprised

as many as possible of the known results. Also, frequently a stronger form of a

given injectivity criterion can serve further as a sufficient condition for the existence

of quasiconformal extensions to the entire plane. As a main step in understanding

the phenomenon of injectivity and eventually quasiconformal extension, Epstein has

proved recently a remarkable theorem which generalizes many such known results

1



CHAPTER 1. INTRODUCTION 2

[22]. His approach is mainly differential geometric and uses in a beautiful way the

geometry of hyperbolic 3-space. In quite a different character and in a way, with a

more classical approach, Anderson and Hinkkanen established also recently an even

stronger sufficient criterion for univalence and quasiconformal extension [9]. Their

theorem is more general, in that it applies to analytic maps defined on quasidiscs.

A generalization of the notion of Schwarzian derivative to higher dimensions was

considered by Ahlfors in [6]. He discusses that concept for local diffeomorphisms in

Rn, n ≥ 3, by making an analogy with the real and imaginary parts of the usual

Schwarzian derivative of analytic maps in the plane. In euclidean space of dimension

≥ 3, all conformal maps are Möbius transformations and as in the case n = 2,

their Schwarzian derivative vanishes identically. So in some sense, the conformal

significance of the Schwarzian derivative in Rn is trivial for n ≥ 3. In their paper “The

Schwarzian derivative and conformal mappings of Riemannian manifolds”[41], Osgood

and Stowe introduce a notion of Schwarzian derivative on manifolds, which generalizes

the classical operator in the plane. In the subsequennt paper “A generalization of

Nehari’s univalence criterion”[42], and using their new notion, these authors establish

a sufficient condition for the injectivity of a conformal local diffeomorphism of an n-

dimensional Riemannian manifold M to the standard sphere Sn. The idea of their

proof, which can be partially traced back to some classical proofs, is to translate the

given inequality on the Schwarzian to a differential inequality along geodesics. Then

they apply a standard Sturm comparison theorem for ordinary differential equations.

They obtain as corollaries, with M the unit disc in the plane and particular choices

of its metric, two classical criteria of Nehari.

In Chapter 2, we define cross-ratio on Riemannian manifolds, which we shall show

relates to the Schwarzian derivative of Osgood and Stowe in a way analogous to the

relationship between the two quantities in the plane. In particular, the Schwarzian

derivative can be viewed as the first nontrivial term in the infinitesimal deformation

of cross-ratio.

Chapter 3 will be devoted to deriving from the general theorem of Osgood and

Stowe some new and most of the known injectivity criteria. In particular, we shall

obtain in this fashion the injectivity result of Epstein. The language of conformal
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geometry in which the result of Osgood and Stowe is stated, allows us to obtain a

sufficient condition for the univalence of analytic maps defined on arbitrary simply-

connected domains. This theorem can be considered as the counterpart to the nec-

essary condition established by Bergman and Schiffer. It comes as somewhat of a

surprise to realize that an equivalent sufficient condition cannot exist on domains of

multiple connectivity. We shall prove a general theorem to that extent. By means of

conformal invariance, we can restate this result as a sufficient condition for a domain

on the Sn to be simply-connected. The theorem is sharp.

In Chapter 4, the differential geometric techniques of Epstein in hyperbolic n+ 1-

space will be used to show when a strengthened version of the univalence criterion

of Osgood and Stowe guarantees the existence of a quasiconformal reflection on the

target space Sn. The key point will be the fact that the distortion of the reflection

across a hypersurface in Hn+1, which is determined by a support function ρ on a

domain in Sn = ∂Hn+1, can be expressed in terms of the main quantities involved in

the theorem of Osgood and Stowe (namely, the Schwarzian derivative of ρ and the

scalar curvature of the metric e2ρg1, where g1 is the round metric on the sphere).

In Chapter 5, we will investigate some variations of the theorem of Osgood and

Stowe. In short, a very important ingredient in the proof of their theorem is the

existence of good “test functions” on Sn, i.e., functions u ≥ 0 vanishing only at a

given point, for which u−2g1 is flat and such that the Hessian of u (in the spherical

metric) is proportional to g1 itself. The same holds true in Rn and hyperbolic space

Hn with their respective metrics of constant curvature 0 and -1. In Rn, such functions

are given by the square of the distance to a given point. On the other hand, functions u

for which Hess(u)− 1
n
(∆u)g is small always exist locally on any Riemannian manifold

with metric g; simply take u = dist2( , P0) in a neighborhood of the point P0. In fact,

the norm of Hess(u)− 1
n
(∆u)g is O(u) near P0. In the case when the target manifold

is complete, simply-connected and of nonpositive curvature, say bounded between

−a2 and 0, the function u = dist2( , P0) is smooth everywhere. It is possible to

appropriately estimate the quantity Hess(u)− 1
n
(∆u)g by using comparison theorems.

This will yield an injectivity criterion for conformal maps of an arbitrary Riemannian

manifold into such target spaces.
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The other situation in which one can obtain nonnegative choices of u vanishing at

only one point and for which Hess(u)− 1
n
(∆u) is well behaved, is when considering the

restriction of solutions to Hess(u) = 1
m

(∆u)g0 in Rm, m > n, to an n-dimensional

submanifold with the induced metric. In that case, we shall obtain an injectivity

criterion for a conformal immersion of a manifold into higher dimensional euclidean

space. By means of two examples we will show this theorem to be sharp. The

criterion is much simpler when the immersion is isometric, and since holomorphic

maps on domains in Cn or for that matter, any complex manifold, are conformal on

complex lines, the theorem also has particular formulations in the complex analytic

setting.

1.2 Some background

In this section we will set up basic notation, give a few definitions and establish some

preliminary results.

Let M be an n-dimensional Riemannian manifold with metric g. When M = Rn,

we will denote by g0 the euclidean metric and on the n-sphere Sn, g1 will stand for

the standard round metric. Given a conformal metric ĝ = e2ϕg on M , Osgood and

Stowe define the Schwarzian tensor of ĝ with respect to g as the symmetric, traceless

(0,2)-tensor

Bg(ϕ) = Hess(ϕ)− dϕ⊗ dϕ− 1

n
(∆ϕ− |grad ϕ|2)g , (1.2.1)

where the metric dependent quantities on the right-hand side are computed with

respect to the metric g. When ψ is a conformal local diffeomorphism of (M, g) to

another Riemannian manifold (N, g′), then ψ∗(g′) = e2ϕg with ϕ = log |Dψ|. The

Schwarzian derivative of ψ is defined by

Sg(ψ) = Bg(ϕ) . (1.2.2)

For an analytic map ψ in the plane, with g = g′ = g0, then ϕ = log |ψ′| and

computing in standard coordinates one gets

Sg(ψ) =

 Re{ψ, z} −Im{ψ, z}
−Im{ψ, z} −Re{ψ, z}

 , (1.2.3)
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where {ψ, z} = (ψ
′′

ψ′ )′ − 1
2
(ψ

′′

ψ′ )2 is the classical Schwarzian derivative.

On M , the conformal metric ĝ = e2ϕg is called Möbius with respect to g if Bg(ϕ) =

0, and so a conformal local diffeomorphism ψ as before is said to be Möbius if Sg(ψ) =

0. If ϕ and σ are smooth functions on M , then there is an important identity:

Bg(ϕ+ σ) = Bg(ϕ) +Bĝ(σ) , (1.2.4)

where ĝ = e2ϕg. In a chain of conformal local diffeomorphisms ψ1 : (M, g)→ (N1, g
′)

and ψ2 : (N1, g
′)→ (N2, g

′′), equation (1.2.4) can be formulated as

Sg(ψ2 ◦ ψ1) = Sg(ψ1) + ψ∗1(Sg′(ψ2)) . (1.2.5)

This reduces to the classical formula for the Schwarzian derivative of a composition of

analytic maps in the plane. The other important fact, also analogous to the situation

in the complex plane, is that the nonlinear equation

Bg(ϕ) = 0 (1.2.6)

transforms under substitution u = e−ϕ to the linear equation

Hess(u) =
1

n
(∆u)g , (1.2.7)

and more generally

Bg(ϕ) = q (1.2.8)

linearizes under the change above to

Hess(u)− 1

n
(∆u)g = −uq . (1.2.9)

For proofs and further references on the preceedings we refer the reader to [41].

For conformal local diffeomorphisms ψ of Rn to Rn, the vanishing of Sg0(ψ) coin-

cides with the classical definition of Möbius transformations (defined as composites

of dilations, rotations, translations and inversions). The difference between the pla-

nar case and the case when n ≥ 3 is that in the latter, Möbius transformations are

the only (even locally defined) conformal maps. This is the well-known theorem of
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Liouville. If we denote by conf(M, g) and Möb(M, g) respectively the groups of con-

formal and Möbius diffeomorphisms of M to itself, then more generally, for n ≥ 3,

conf(M, g) = Möb(M, g) when (M, g) is Einstein (see [41]).

On arbitrary surfaces, the following theorem in [41] characterizes Möbius trans-

formations

Theorem 1.2.1 A conformal diffeomorphism between surfaces is a Möbius transfor-

mation iff it maps (all) curves of constant geodesic curvature to curves of constant

geodesic curvature.

Proof: Let ψ : (M, g) → (M ′, g′) be a conformal diffeomorphism between surfaces,

and let ψ∗(g′) = e2ϕg. If γ is a curve in M with unit tangent T , then its geodesic

curvature is defined by

∇TT = kN ,

where ∇ is the covariant derivative in (M, g) and N a unit normal to γ. Using the

change of the covariant derivative under conformal change of metric

∇̂XY = ∇XY + (Xϕ)Y + (Y ϕ)X − g(X, Y )grad ϕ , (1.2.10)

one finds that the geodesic curvature of γ in ĝ = e2ϕg is given by

k̂ = e−ϕ(k − (Nϕ)) . (1.2.11)

Differentiating (1.2.11) with respect to T yields

e2ϕ(T̂ k̂) = (Tk)−Bg(ϕ)(T,N) , (1.2.12)

with T̂ = e−ϕT . The theorem now follows from the fact that since Bg(ϕ) is symmetric

and traceless, it is determined by its action on pairs of orthogonal tangent vectors.

For 3-manifolds we establish the following

Theorem 1.2.2 A conformal diffeomorphism between 3-dimensional manifolds is

Möbius iff it maps (all) curves of constant geodesic curvature and zero torsion to

curves of constant geodesic curvature and zero torsion.
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Proof: Let ψ : (M, g)→ (M ′, g′) be a conformal diffeomorphism between 3-manifolds,

and let ψ∗(g′) = e2ϕg. For a curve γ in M with unit tangent T we have

∇TT = kN and ∇TN = τB − kT ,

where N and B are respectively unit normal and binormal to γ, k is the geodesic

curvature and τ the geodesic torsion of γ. Using (1.2.10), one now verifies that

e2ϕk̂N̂ = kN + (Tϕ)T − grad ϕ .

Note that we no longer have necessarily N̂ = e−ϕN . In any case, g(N̂ , T ) = 0,

g(N̂ ,N) = k − (Nϕ) and g(N̂ , B) = Bϕ. By taking norms we obtain

e2ϕk̂2 = (k − (Nϕ))2 + (Bϕ)2 . (1.2.13)

After differentiating this equation, a short calculation leads to

e3ϕk̂(T̂ k̂) = (k − (Nϕ))((Tk)−Bg(ϕ)(T,N))−

(Bϕ)(kτ −Bg(ϕ)(T,B)) . (1.2.14)

Since ∇̂T̂ N̂ = τ̂ B̂ − k̂T̂ , we conclude that

k̂N̂ = e−2ϕ((k −Nϕ)N − (Bϕ)B) .

But ∇TB = −τN , and now a long yet elementaty calculation yields

eϕτ̂ =
(Bϕ)(Tk −Bg(ϕ)(T,N)) + (k −Nϕ)(kτ −Bg(ϕ)(T,B))

(k −Nϕ)2 + (Bϕ)2
. (1.2.15)

Suppose now that Bg(ϕ) = 0. Then Tk = τ = 0 implies T̂ k̂ = τ̂ = 0. On the

other hand, assume that under the conformal change of metric, curves mantain the

property of having constant geodesic curvature and zero torsion. Given a point p ∈M
where grad ϕ 6= 0 and two orthogonal vectors T,N ∈ TpM , let γ be the geodesic with

tangent vector T at p. Thus k = 0. Let B ∈ TpM be orthogonal to T and N , and let

T,N,B stand also for the parallel translates of these vectors along γ.
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Suppose that grad ϕ is not a multiple of T at that point. Hence (Nϕ)2+(Bϕ)2 6= 0

near p and from (1.2.14) and (1.2.15) we get

−(Nϕ)Bg(ϕ)(T,N) + (Bϕ)Bg(ϕ)(T,B) = 0

and

−(Bϕ)Bg(ϕ)(T,N)− (Nϕ)Bg(ϕ)(T,B) = 0 ,

hence

Bg(ϕ)(T,N) = Bg(ϕ)(T,B) = 0 .

Now by continuity in the arguments T and N , we also have that Bg(ϕ)(T,N) = 0

when Nϕ = Bϕ = 0. This shows that Bg(ϕ) = 0 at such p. In the interior of the set

where grad ϕ = 0, by its definition, Bg(ϕ) = 0 and its vanishing everywhere follows

again by continuity.

This characterization of Möbius transformations allows the following inductive

proof of Liouville’s theorem, which states

Theorem 1.2.3 Let Ω ⊂ Rn, n ≥ 3, be an open and connected set, and let ψ : Ω →
Rn be a conformal local diffeomorphism. Then ψ is the restriction to Ω of a Möbius

transformation of Rn ∪ {∞}.

For the proof, we may assume by taking if necessary a subset of Ω, that ψ is

injective. Also, just to fix ideas, by composing ψ with a Möbius transformation, we

may also assume that 0 ∈ Ω and that ψ fixes the origin. In Rn, the only totally

umbilic hypersurfaces are (pieces) of hyperplanes and spheres [40]. Let Σ be a totally

umbilic hypersurface, and as before, let ψ∗(g0) = e2ϕg0. Under this conformal change

of metric one has

eϕXĤ = XH −Bg(ϕ)(X,N) ,

where H and Ĥ are respectively the mean curvatures of Σ in g0 and e2ϕg0, X is

tangent to Σ and N is the normal vector (see [41]). Since the curvatures of g0 and

e2ϕg0 vanish and n ≥ 3, we must have that Bg(ϕ) = 0. (This is basically the proof

that all conformal selfmaps of Einstein manifolds are actually Möbius, and it follows
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from the fact that Bg(ϕ) is the term by which traceless part of the Ricci tensor

changes under a conformal change of metric [41].)

Since the property of being totally umbilic is preserved under conformal maps, we

conclude that ψ takes (pieces) of hyperplanes and spheres to (pieces) of hyperplanes

and spheres.

We now use an induction argument. Let n = 3 and Σ0 be a plane through the

origin. Then ψ(Σ0) lies on a plane or a sphere. From the characterization of Möbius

maps in 3-manifolds, we get that ψ takes circles (closed curves of constant geodesic

curvature and zero torsion) into circles. Thus the restriction of ψ to Ω ∩ Σ0 is a

2-dimensional Möbius map F0, which can be extended uniquely to a Möbius map of

R3 ∪ {∞}. If now Σ is any plane through the origin which is orthogonal to Σ0, the

same argument shows that the restriction of ψ to Ω ∩ Σ is Möbius. But since these

two conceivably different Möbius transformations agree on Ω ∩ Σ0 ∩ Σ, they have to

agree everywhere.

Assuming that the result is valid for n − 1, we will show it for n in a similar

fashion.

Let Σ0 be a hyperplane through the origin. The induction hypothesis gives that the

restriction of ψ to Ω∩Σ0 is a Möbius map T0 in n−1 dimensions, which again can be

extended uniquely to a Möbius map in n dimensions. If Σ is any hyperplane through

the origin containing the direction normal to Σ0, then as before, the restriction of ψ

to such hyperplane is Möbius and agrees with T0 on Ω∩Σ0 ∩Σ. Hence, they have to

be equal everywhere. This finishes the proof.

Another way of understanding conformal transformations in euclidean space is by

studying the associated Lie algebra, i.e., vector fields that generate a 1-parameter

family of diffeomorphisms which are conformal. Ahlfors has introduced the follow-

ing operator as a way of generalizing the operator ∂ : given V : Ω ⊂ Rn → Rn

differentiable, he defines

SV (x) =
1

2
(DV (x) +DV t(x))− 1

n
(trDV (x))I , (1.2.16)

where Ω is an open set, DV (x) the differential of V at x, DV t(x) its transpose and

I the identity matrix. It is not difficult to see that when n = 2, SV = 0 iff V is
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conformal. Ahlfors calls the solutions to SV = 0 trivial deformations and shows that

for n ≥ 3, the only solutions are of the form

V (x) = a+B(x) + 2(c · x)x− |x|2c , (1.2.17)

where a, c ∈ Rn, · is the euclidean inner product, |x| the euclidean length, and B is

a linear map satisfying SB = 0 [4].

Sarvas established a close connection between Ahlfors’ characterization of trivial

deformations and the theorem of Liouville. In order to relate both theorems, he

analyzes the flow generated by V , i.e., the solution to the differential equation

∂

∂t
ψ(x, t) = V (ψ(x, t)) , ψ(x, 0) = x , (1.2.18)

and proves the following key result:

Lemma 1.2.1 The solution to (1.2.18) consists of conformal maps ψt(x) = ψ(x, t)

for all sufficiently small t iff V is a trivial deformation.

We refer the reader to [49] for the proof. Using this, he shows that for n ≥ 3,

Ahlfors’ characterization of trivial deformations can be rather easily derived from

Liouville’s theorem, and vice-versa.

On the other hand, in the general setting of Riemannian geometry it is known

that a vector field V generates a conformal flow iff its covariant differential satisfies

∇XV = vX + σ(X) , (1.2.19)

where v is a function and σ is a field of skew-symmetric linear endomorphisms. Fur-

thermore, the flow consists of isometries iff v is zero and of Möbius transformations

iff Hess(v) = 1
n
∆(v)g. In Rn, the solutions to this last equation are given by

v(x) = a|x|2 + b · x+ c , (1.2.20)

where a, c ∈ R, b ∈ Rn [41]. Therefore, Liouville’s theorem implies that for n ≥ 3,

all vector fields V : Ω ⊂ Rn → Rn generating a conformal flow satisfy (1.2.19), with

v as in (1.2.20).

Let us denote by G the group of all Möbius transformations in Rn, and let TG be

its tangent space at the identity. We can tie together the various notions discussed

above, and show
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Proposition 1.2.1 The following are equivalent:

(A) V generates a conformal flow ,

(B) ∇XV = vX + σ(X) , as in (1.2.19) ,

(C) V is as in (1.2.17) ,

(D) SV = 0 ,

(E) V ∈ TG .

We will understand the last condition as saying that for some ε > 0, there exist a

curve γ : (−ε, ε)→ G with γ(0) = I and γ′(0) = V .

Proof: The equivalence of (A) and (B) has already been established, and (C) iff (D)

is Ahlfors’ theorem. Sarvas’ lemma is precisely (A) iff (D), but we want to show this

in a slightly different way. It is easy to see that (C) implies (B), and we will show

that (B) implies (C). Then we will prove that (C) iff (E).

So, assume that V satisfies B. In the proof, we will require V to be at least C4,

but as Sarvas shows in his paper, weaker regularity conditions are sufficient. We may

also asssume that the domain Ω contains the origin and that V (0) = 0. Let us write

V = (V1, ..., Vn) and Xi = ∂i for coordinate differentiation. At x ∈ Ω, σ = (σij) is

skew-symmetric. Then,

< ∇XjV,Xi >= ∂jVi = vδij + σij ,

where we have used < , > to denote the euclidean inner product. Hence,

∂jVi =

 v if i = j

σij if i 6= j
.

Recall that v(x) =a|x|2 + b · x+c, so that

∂2
2∂1V1 = ∂2

2v = 2a = ∂1∂2σ12 = −∂1∂2σ21 = −∂2
1∂2V2 = −∂2

1v = −2a ,

thus a= 0. We will show now that for i 6= j

∂jVi = bjxi − bixj +
∑
k 6=i,j

aijk xk + cij ,
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where aijk are functions satisfying aijk = aikj = −ajik , and cij constants such that

cij = −cji. Here, b = (b1, ..., bn). We know that for i 6= j, ∂jVi = σij, hence

∂iσij = ∂i∂jVi = ∂jv = bj ,

and

∂jσij = −∂jσji = −bi .

Thus

σij = bjxi − bixj + µij ,

where

∂iµij = ∂jµji = 0 .

Let k 6= i, j. Then

∂kµij = ∂kσij = ∂j∂kVi = ∂jσik = ∂jµik ,

hence

∂2
kµij = ∂j∂kµik = 0 ,

since µik is independent of xk. Therefore

µij =
∑
k 6=i,j

aijk xk + cij .

The skew-symmetry of µij in i and j follows from the one of σij, and

aijk = ∂k∂jVi = ∂j∂kVi = aikj .

All the symmetries of the aijk will force them to vanish, as

aijk = aikj = −akij = −akji = ajki = ajik = −aijk .

Therefore we finally have

∂jVi =

 b · x + c , if i = j

bjxi − bixj + cij if i 6= j
, and cij = −cji .
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Let C be the skew-symmetric matrix (cij), and let B = cI + C. Then, SB = 0

(in fact, in general, SB = 0 iff B = λI +D with λ a constant, and Dt = −D). Let

W (x) = B(x) + (b · x)x− 1

2
|x|2b .

It is easy to see that all derivatives of W and V are equal, and since W (0) = V (0) = 0,

we conclude the desired equality.

We show now the implication (C)⇒(E). Let V be of the form

V (x) = a+B(x) + 2(c · x)x− |x|2c ,

where a, c ∈ Rn, B = λI+D, Dt = −D . We identify each part of the decomposition,

namely

a =
dA1

dt
|t=0 , A1(t) = I + ta,

B =
dA2

dt
|t=0 , A2(t) = etB

and

|x|2c− 2(c · x)x =
dA3

dt
|t=0 ,

with A3(t) = J(J(x) + u(t)). Here J(x) = x
|x|2 and we may take u(t) to be any curve

such that u(0) = 0 and u′(0) = c .

To conclude that (E) implies (C) we count dimensions. A vector field V of the

form (1.2.17) as in (C) has n+ (1 + n(n−1)
2

) +n = (n+1)(n+2)
2

degrees of freedom, which

is precisely the dimension of the group G.

We make a final remark about the case n = 2. Liouville’s theorem still holds if we

talk about conformal diffeomorphisms of R2, i.e., they are all Möbius transformations.

Therefore, if Ω = R2 we again have (A) iff (B) iff (C) iff (E), and any of these

conditions implies (D). But as mentioned before, (D) holds for any analytic function.



Chapter 2

Cross-Ratio

2.1 The Schwarzian derivative as an infinitesimal

cross-ratio

In this section we will introduce a notion of cross-ratio on Riemannian manifolds,

from which we will recover the Schwarzian tensor Bg(ϕ) of the conformal metric

e2ϕg = ψ∗(g) as the first nontrivial term in the infinitesimal deformation of cross-

ratio under the map ψ.

In his paper “Schwarzian derivatives and cross-ratios in Rn”[6], Ahlfors defines

the cross-ratio of four points in Rn as follows: given x, y, u, v,∈ Rn, there exists a

unique 2-sphere (2-plane or line) passing through these four points. Thus you can

view these points as complex numbers on a Riemann sphere, and their cross-ratio

is therefore defined. Let us denote it by (x, y, u, v), which will be our notation for

cross-ratio from now on. Ahlfors shows that its absolute value |(x, y, u, v)| is given by

|(x, y, u, v)| = |x− u||y − v|
|x− v||y − u|

,

and the argument of (x, y, u, v) is the angle at u between circular arcs from u through

x to v, and from u through y to v. This angle is unique up to change of sign, i.e.,

up to orientation of the given 2-sphere. With this definition, the absolute cross-

ratio, meaning the absolute value of the cross ratio, becomes invariant under Möbius

transformations.

14
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The same idea can be used to define the cross-ratio of four points in any real n-

dimensional vector space which is endowed with an inner product. It is now natural

to consider the case of an n-dimensional Riemannian manifold (M, g), and study the

cross-ratio of four vector fields, i.e., the cross-ratio will be taken at each point with

the corresponding inner product coming from the metric g.

We will give now the formal definitions. Let X, Y, U, V be vector fields on M . The

length of a vector will be denoted by | |. Then the cross-ratio (X, Y, U, V ) is defined

to be the complex number z, unique up to conjugation, satisfying

|z| = |X − U ||Y − V |
|X − V ||Y − U |

(2.1.1)

and

cos(arg z) =
g(A,B)

|A||B|
, (2.1.2)

where A and B are given by

A =
X − V
|X − V |2

− U − V
|U − V |2

,

(2.1.3)

B =
Y − V
|Y − V |2

− U − V
|U − V |2

.

This last expression defining the argument of the cross-ratio comes from the fol-

lowing: at a fixed point in M , we can perform a Möbius inversion about the point V ,

which will leave the cross-ratio invariant up to conjugation. The 2-sphere on the tan-

gent space at that point gets mapped under the inversion above onto a plane through

infinity on that tangent space. The circular arcs defining the argument of the cross-

ratio are taken to straight lines, and now our definition follows from looking at the

angle between these two lines. Note that whereas the argument of the cross-ratio is

not unique, its cosine is well defined.

In the complex plane, there is an interesting and well-known relation between

cross-ratio and Schwarzian derivative. It comes from then following identity: given ψ

analytic at z and four complex numbers a, b, c, d, then

(ψ(z + ta), ψ(z + tb), ψ(z + tc), ψ(z + td)) = (a, b, c, d)(1 +
1

6
(a− b)(c− d){ψ, z}t2

+O(t3)) . (2.1.4)
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A proof can be found in [6].

It is our purpose to generalize this last equation to the context of Riemannian

manifolds, at least when considering the absolute cross-ratio.

Let ψ : M → M will be a conformal diffeomorphism. We write ψ∗(g) = e2ϕg.

Given a point p ∈M and the cross-ratio in TpM , we can define the cross-ratio of four

points p1, p2, p3, p4 ∈M that are sufficiently close to p by using the exponential map

at p, namely by

(p1, p2, p3, p4) = (exp−1
p (p1), exp−1

p (p2), exp−1
p (p3), exp−1

p (p4)) .

Let now X1, X2, X3, X4 be four distinct vectors at p, and we seek an expression

similar to the one that can be obtained from (2.1.4) for the absolute cross ratio

|(ψ(exp(tX1)), ψ(exp(tX2)), ψ(exp(tX3)), ψ(exp(tX4)))| .

For convenience, we have dropped the subindex in the exponential map. This will

cause no confusion, since from the context one will know at which point it is based.

For example, in the last equation the cross-ratio is at q = ψ(p).

The main tool for deriving such an expansion will be to obtain the first few terms

in the expansion in t of exp−1(ψ(exp(tX))), where X ∈ TpM .

The conformal map ψ provides an isometry between the metrics g and ĝ = e−2σg,

where σ = ϕ◦ψ−1. Because of this, ψ commutes with the corresponding exponentials,

i.e., ψ(exp(tX)) = êxp(tψ∗(X)), whereˆstands for quantities in the metric ĝ. Let γ

the curve in TqM given by t → exp−1 ◦ êxp(tψ∗(X)). We refer now to [41] for the

following result:

Proposition 2.1.1 A parametrization of γ by constant speed |ψ∗(X)| in the metric

exp∗(g) is given by

µ(τ) = τY − τ 2

2
(grad σ)N |Y |2 +

τ 3

6
({M(−σ)Y }N − |{grad σ}N |2Y )

+O(τ 4|Y |4) , (2.1.5)

where Y = ψ∗(X), N stands for projection onto the orthogonal complement of the line

RY , and M(−σ) is the matrix representing the Schwarzian tensor of Bg(−σ) in the
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metric g, i.e.,

Bg(−σ)(Y, Z) = g(M(−σ)Y, Z) ,

for all Z ∈ TpM .

We shall use this result to prove the next

Proposition 2.1.2 Let α(t) = exp−1 ◦ êxp(tY ) . Then

α(t) = tY + t2A+ t3B +O(t4) ,

where

A = X(ϕ)Y − 1

2
ψ∗(grad ϕ) ,

6B = (2Hess(ϕ)(X,X) + 4X(ϕ)2 − |X|2|grad ϕ|2)Y −

|X|2ψ∗(∇Xgrad ϕ)− 2X(ϕ)|X|2ψ∗(grad ϕ) .

(2.1.6)

Proof: Let β(t) = êxp(tY ) and γ(τ) = exp(µ(τ)). These represent the same curve

in M , with ||β′(t)|| constant equal to ||Y || = e−σ|Y | and |γ′(τ)| constant equal to

|Y | (here, we have denoted by || || the norm in the metric ĝ). We seek a change of

parameter t→ s(t) with s(0) = 0 such that the curve η(t) = êxp(s(t)Y ) has constant

speed |Y | in the metric g. For then, η(t) = γ(t). We compute:

η′(t) = Dêxp|s(t)Y (s′(t)Y ) = s′(t)Dêxp|s(t)Y (Y )

hence

|η′(t)| = s′(t)
∣∣∣Dêxp|s(t)Y (Y )

∣∣∣ .
But since

||β′(t)|| = e−σ(β(t))|β′(t)| = e−ϕ(exp(tX)) |Dêxp|tY (Y )| = e−ϕ|Y | ,

we have

|Dêxp|tY (Y )| = eϕ(exp(tY ))−ϕ|Y | .
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We have assumed that s′(t) > 0 at least for small t, so in order to have |η′(t)| = |Y |,
we need s′(t) = eϕ−ϕ(exp(tX)). This gives the following equations defining s:

s′(0) = 1 , and s′′(t) = −s′(t)g(grad ϕ|exp(s(t)X), Dexp|s(t)X(s′(t)X)) ,

and thus

s′′(0) = −X(ϕ) .

Define λ(t) = exp(s(t)X). Then

s′′′(t) = eϕ−ϕ(λ(t))

(
dϕ(λ(t))

dt

)2

− eϕ−ϕ(λ(t))d
2ϕ(λ(t))

dt2
. (2.1.7)

Also,

d2ϕ(λ(t))

dt2
=

d

dt
g(grad ϕ|λ(t), λ

′(t))

= g(∇λ′(t)grad ϕ|λ(t), λ
′(t)) + g(grad ϕ|λ(t),∇λ′(t)λ

′(t)) .

At t = 0,

d2ϕ(λ(t))

dt2
|t=0 = g(∇Xgrad ϕ,X) + g(grad ϕ,∇λ′(t)λ

′(t)|t=0) .

The curve λ0(t) = exp(tX) is a geodesic in the metric g, thus ∇λ′0(t)λ
′
0(t) = 0. We

conclude that

∇λ′(t)λ
′(t) = s′′(t)λ′0(s(t)) ,

and therefore

∇λ′(t)λ
′(t)|t=0 = s′′(0)X = −X(ϕ)X .

Now back to (2.1.7) and setting t = 0, we obtain

s′′′(0) = X(ϕ)2 − g(∇Xgrad ϕ,X)− g(grad ϕ,−X(ϕ)X)

= 2X(ϕ)2 −Hess(ϕ)(X,X) .

If τ = s(t), then the inverse t = h(τ) near τ = 0 satisfies

h′(0) = 1 , h′′(0) = X(ϕ) and h′′′(0) = Hess(ϕ)(X,X) +X(ϕ)2 .



CHAPTER 2. CROSS-RATIO 19

We now get

η(t) = êxp(s(t)Y ) = γ(t) = exp(µ(t)) ,

or

exp−1 ◦ êxp(tY ) = µ(h(t)) .

Using equation (2.1.5) we finally obtain

exp−1 ◦ êxp(tY ) = h(t)Y − h(t)2

2
(grad σ)N |Y |2 +

h(t)3

6
({M(−σ)Y }N − |{grad σ}N |2Y )

+O(t4) , (2.1.8)

with

h(t) = t+
1

2
X(ϕ)2t2 +

1

6
(Hess(ϕ)(X,X) +X(ϕ)2)t3

+O(t4) . (2.1.9)

We want to write (2.1.8) in powers of t. This involves straightforward calculations

and the following identities:

grad σ = e−2ϕψ∗(grad ϕ) , (2.1.10)

thus

(grad σ)N = e−2ϕψ∗(grad ϕ−
X(ϕ)

|X|2
X) . (2.1.11)

Also

M(−σ)Y = e−2ϕψ∗(M(−ϕ)X) + 2e−2ϕX(ϕ)ψ∗(grad ϕ)− 2
2

n
e−2ϕ|grad ϕ|2Y ,

hence

(M(−σ)Y ) = e−2ϕ(ψ∗(M(−ϕ)X)N + 2e−2ϕX(ϕ)(ψ∗(grad ϕ))N .

But

(ψ∗(M(−ϕ))X)N = ψ∗(M(−ϕ)X)− 1

|Y |2
g(ψ∗(M(−ϕ)X), Y )Y

= ψ∗(M(−ϕ)X)− 1

|X|2
Bg(−ϕ)(X,X)Y ,

(2.1.12)
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and

M(−ϕ)X = −M(ϕ)X − 2X(ϕ)grad ϕ+
2

n
|grad ϕ|2|X|2 . (2.1.13)

Therefore

(M(−σ)Y )N = −e−2ϕψ∗(M(ϕ)X) + e−2ϕBg(ϕ)(X,X)

|X|2
Y . (2.1.14)

Equation (2.1.8) can be finally written as

exp−1 ◦ êxp(tY ) = tY + t2A+ t3B +O(t4) ,

with

A = X(ϕ)Y − 1

2
|Y |2grad σ ,

6B = (M(−σ)Y )N + (Hess(ϕ)(X,X) +X(ϕ)2)Y −

|(grad σ)N |2|Y |2Y − 1

2
X(ϕ)(grad σ)N |Y |2 .

To derive this last equation, we have used the expression for h(t) as in (2.1.9). The

proposition finally follows after replacing the terms M(−σ)Y , grad σ and their normal

components using equations (2.1.10), (2.1.11) and (2.1.12).

Now let us go back to the infinitesimal deformation of cross-ratio. From (2.1.4)

one can directly obtain an expansion in t of the absolute value of the cross-ratio, and

we shall establish as the main result in this section the following generalization of it.

Let X1, X2, X3, X4 ∈ TpM , and let Zi(t) = exp−1 ◦ êxp(tψ∗(Xi)) for i = 1, 2, 3, 4. Our

theorem concerns a second order expansion in powers of t of the quantity

ζ(t) = |(Z1(t), Z2(t), Z3(t), Z4(t))|

=
|Z1(t)− Z3(t)||Z2(t)− Z4(t)|
|Z1(t)− Z4(t)||Z2(t)− Z3(t)|

, (2.1.15)

namely

Theorem 2.1.1 With the notation as before,

ζ(t) = ζ(0)(1 +
1

2

ζ ′′(0)

ζ(0)
t2 +O(t3)) ,
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where

ζ(0) =
|X1 −X3||X2 −X4|
X1 −X4||X2 −X3|

,

ζ ′′(0)

ζ(0)
=

1

3
Σ4
Bg(ϕ)(Xi, Xj)(|Xi|2 + |Xj|2)−Bg(ϕ)(Xi, Xi)|Xj|2 −Bg(ϕ)(Xj, Xj)|Xi|2

|Xi −Xj|2

+
1

12
(2m(ϕ) + |grad ϕ|2)Σ4

(|Xi|2 − |Xj|2)2

|Xi −Xj|2
, (2.1.16)

and m(ϕ) = 1
n
(∆ϕ− |grad ϕ|2).

Remarks

(1) We have introduced here the following convenient notation:

Σ4Aij = A13 + A24 − A23 − A14 .

(2) Note that the theorem asserts implicitly that ζ ′(0) = 0.

Proof: We first note that Zi(t) can be written as ψ∗(Wi(t)), and since ψ∗ is a con-

formal map between tangent spaces, we can as well do all the computations with the

Wi’s. It is clear that

ζ(0) =
|X1 −X3||X2 −X4|
|X1 −X4||X2 −X3|

. (2.1.17)

We compute ζ ′(0) by using logarithmic derivative, which yields

2
ζ ′(t)

ζ(t)
=

(|W1 −W3|2)′

|W1 −W3|2
+

(|W2 −W4|2)′

|W2 −W4|2
− (|W1 −W4|2)′

|W1 −W4|2
− (|W2 −W3|2)′

|W2 −W3|2
.

(2.1.18)

At t = 0 we get
ζ ′(0)

ζ(0)
= Σ4

g(Xi −Xj, Ai − Aj)
|Xi −Xj|2

.

After a short calculation and using (2.1.6), one obtains

g(Xi −Xj, Ai − Aj) =
1

2
(Xi(ϕ) +Xj(ϕ))|Xi −Xj|2 ,

so that
ζ ′(0)

ζ(0)
=

1

2
Σ4(Xi(ϕ) +Xj(ϕ)) = 0 ,
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because all the terms cancel out. Hence, ζ ′(0) = 0. We differentiate (2.1.18), to

obtain

2(
ζ ′′(t)

ζ(t)
− (

ζ ′(t)

ζ(t)
)2) = Σ4

(|Wi −Wj|2)′′

|Wi −Wj|2
− Σ4

{(|Wi −Wj|2)′}2

|Wi −Wj|4
.

At t = 0 we get

ζ ′′(0)

ζ(0)
= Σ4

|Ai − Aj|2 + 2g(Xi −Xj, Bi −Bj)

|Xi −Xj|2
− 1

2
Σ4(Xi(ϕ) +Xj(ϕ))2 .

A lengthy calculation again using equations (2.1.6) for the A′is and B′is yields the

following expression:

ζ ′′(0)

ζ(0)
=

1

3
Σ4
Bg(ϕ)(Xi, Xj)(|Xi|2 + |Xj|2)−Bg(ϕ)(Xi, Xi)|Xj|2 −Bg(ϕ)(Xj, Xj)|Xi|2

|Xi −Xj|2

+
1

12
(m(ϕ) + |grad ϕ|2)Σ4

(|Xi|2 − |Xj|2)2

|Xi −Xj|2
,

where

m(ϕ) =
1

n
(∆ϕ− |grad ϕ|2) .

Thus we finally get

ζ(t) = ζ(0)(1 +
ζ ′′(0)

2ζ(0)
t2 +O(t3)) , (2.1.19)

where ζ(0) is as in (2.1.17).

This last equation generalizes the analogous situation in the complex plane. In

that case, ϕ = log |ψ′| and the tensor Bg(ϕ) is given in usual coordinates by (1.2.3).

It is interesting to note that in this case, 2m(ϕ) + |grad ϕ|2 = ∆ϕ = 0 since ϕ

is harmonic. It is now not difficult to verify that (2.1.16) indeed reduces to the

corresponding expansion from (2.1.4).

Finally, and back to the general case, by choosing X1, X2, X3, X4 appropriately,

we can express the Schwarzian tensor in terms of the change in the absolute cross-

ratio, as follows: since Bg(ϕ) has trace zero, it is determined by its action on pairs

of orthogonal vectors; thus if we let X1 = −X2 = X and X3 = −X4 = Y with

|X| = |Y | = 1 and g(X, Y ) = 0, then the term Σ4
(|Xi|2−|Xj |2)2

|Xi−Xj |2 = 0, and because of

the symmetry of the Schwarzian tensor we get that

ζ ′′(0)

ζ(0)
=

4

3
Bg(ϕ)(X, Y ) .
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Since for these choices of Xi one has ζ(0) = 1, we conclude

Corollary 2.1.1

Bg(ϕ)(X, Y ) =
3

2
lim
t→0

ζ(t)− 1

t2
.

In this fashion one can recover the tensor Bg(ϕ) as the first nontrivial term in the

infinitesimal deformation of the absolute cross-ratio.

2.2 Cross-ratio and Ricatti equations

A second application of cross-ratio comes up in relation to solutions of a Ricatti

equation. Such an equation in the plane is of the form

dy

dz
= a(z)y2 + b(z)y + c(z) . (2.2.1)

It is known in the study of solutions of this last equation, that when the coefficients

a, b, c are analytic functions of z, the cross-ratio of any four linearly independent

analytic solutions is constant [30]. We will consider the important special case of

(2.2.1) when
dy

dz
− 1

2
y2 = 0 , (2.2.2)

whose only solutions are of the form y = T ′′/T ′, where T is a Möbius transforma-

tion; this is nothing else but the statement that Möbius transformations are the only

analytic functions with vanishing Schwarzian derivative.

Our purpose is to establish a similar result about the behavior of the cross-ratio of

solutions to a Ricatti equation of the form (2.2.2), now in the context of Riemannian

manifolds. We shall use the notion of a Möbius solution as [41] and the cross-ratio

introduced in the last section.

The solution T corresponding to y in (2.2.2) is conformal, thus T ∗(g0) = e2ϕg0.

As usual, g0 is the euclidean metric and ϕ = log |T ′|. We can therefore think of y as

the gradient of the conformal factor ϕ (actually, grad ϕ = y).

In order to prove the generalized theorem, we will first establish the result for

Möbius transformations in Rn, and then a theorem of Osgood and Stowe will enable
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us to reduce the case of Möbius transformations in Riemannian manifolds to the

euclidean setting.

By Liouville’s theorem, Möbius maps are the only conformal transformations in

Rn. We shall consider only those which are orientation-preserving. Such mappings

are the solutions, say at t = 1, of

∂ψ(x, t)

∂t
= V (ψ(x, t)) , ψ(x, 0) = x , (2.2.3)

where V is a vector field generating a flow of conformal transformations. We will call

such vector fields infinitesimal Möbius transformation. Recall from section 1.2 that

the only vector fields satisfying this property are of the form

V (x) = a+B(x) + 2(c · x)x− |x|2c , (2.2.4)

where a, b ∈ Rn, and B is a linear mapping with

SB =
1

2
(B +Bt)− 1

n
tr(B)I = 0 .

Such a mapping B has to be of the form B = B1 + λI with Bt
1 = −B1.

The conformal factor ϕ = log |DT | can be explicitly computed from (2.2.4). In

fact, we have seen in section 1.2 that the single contribution to a nonconstant con-

formal factor will come from the term 2(c · x)x − |x|2c in (2.2.4); it corresponds to

the composition of inversions J(J(x)− u(t)), where J(x) = x
|x|2 and u(t) is any curve

with u(0) = 0 and u′(0) = c. Thus, we find that the gradient of the conformal factor

of the mapping T = ψ1 is given by

grad ϕ(x) =
2(c− |c|2x)

1− 2c · x+ |c|2|x|2
. (2.2.5)

We introduce the notation µc(x) = 1− 2c · x+ |c|2|x|2, and state our first result:

Theorem 2.2.1 Let T1, T2, T3, T4 be orientation-preserving Möbius transformations

in Rn which have nonconstant conformal factors ϕi = log |DTi| such that grad ϕi 6=
grad ϕj. Then the cross-ratio (grad ϕ1, grad ϕ2, grad ϕ3, grad ϕ4) is constant.
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Proof: As mentioned before, grad ϕi(x) = µ−1
i (x)(ci − |ci|2x) will be not identically

zero iff ci 6= 0, and our hypothesis implies furthermore that ci 6= cj.

The proof reduces to calculating the absolute cross-ratio and the cosine of the

argument of the cross-ratio. We first note that for grad ϕ(x) = 2µ−1
c (x)(c− |c|2x)

|grad ϕ(x)|2 = 4µ−2
c (x)(|c|2 + |c|4|x|2 − 2|c|c · x) = 4|c|2µ−1

c (x) .

Hence

1

4
|grad ϕi − grad ϕj|2 = |ci|2µ−1

ci
+ |cj|2µ−1

cj
− 2µ−1

ci
µ−1
cj

(ci − |ci|2x) · (cj − |cj|2x) ,

and the right-hand side simplifies after elementary algebraic manipulations to

µ−1
cj
µ−1
cj
|ci − cj|2 .

Therefore,

|(grad ϕ1, ..., grad ϕ4)| =
|grad ϕ1 − grad ϕ3||grad ϕ2 − grad ϕ4|
|grad ϕ1 − grad ϕ4||grad ϕ2 − grad ϕ3|

=
|c1 − c3|µ−1/2

c1
µ−1/2
c3
|c2 − c4|µ−1/2

c2
µ−1/2
c4

|c1 − c4|µ−1/2
c1 µ

−1/2
c4 |c2 − c3|µ−1/2

c2 µ
−1/2
c3

=
|c1 − c3||c2 − c4|
|c1 − c4||c2 − c3|

.

This shows that the absolute cross-ratio is constant.

We now analyze the argument of the cross-ratio. We know that

cos(arg(grad ϕ1, ..., grad ϕ4)) =
A ·B
|A||B|

,

where A and B are given by

A =
X1 −X4

|X1 −X4|2
− X3 −X4

|X3 −X4|2
,

B =
X2 −X4

|X2 −X4|2
− X3 −X4

|X3 −X4|2
.

For the sake of brevity, we have used the notation Xi = grad ϕi.

We compute first

|A|2 = |X1 −X4|−2 + |X3 −X4|−2 − 2|X1 −X4|−2|X3 −X4|−2(X1 −X4) · (X3 −X4) ,
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thus

|X1 −X4|2|X3 −X4|2|A|2 = |X1 −X4|2 + |X3 −X4|2 − 2(X1 −X4) · (X3 −X4)

= 4
|c1 − c4|2

µc1µc4
+ 4
|c3 − c4|2

µc3µc4
− 2(X1 −X4) · (X3 −X4) .

But

(X1 −X4) · (X3 −X4) = 4(
c1 − |c1|2x

µc1
− c4 − |c4|2x

µc4
) · (c3 − |c3|2x

µc3
− c4 − |c4|2x

µc4
) ,

which after some simplifications can be written as

2µ−1
c1
µ−1
c3
µ−1
c4

(|c1 − c4|2µc3 + |c3 − c4|2µc1 − |c1 − c3|2µc4) .

Hence

|X1 −X4|2|X3 −X4|2|A|2 = 4µ−1
c1
µ−1
c3
|c1 − c3|2 ,

and so

|A|2 =
1

4

|c1 − c3|2

µc1µc3

µc1µc4
|c1 − c4|2

µc3µc4
|c3 − c4|2

=
1

4
µc4

|c1 − c3|2

|c1 − c4|2|c3 − c4|2
.

Similarly,

|B|2 =
1

4
µc4

|c2 − c3|2

|c2 − c4|2|c3 − c4|2
.

We now calculate

A ·B = (
X1 −X4

|X1 −X4|2
− X3 −X4

|X3 −X4|2
) · ( X2 −X4

|X2 −X4|2
− X3 −X4

|X3 −X4|2
) .

One of the summands in the expansion of the right-hand side is

X1 −X4

|X1 −X4|2
· X2 −X4

|X2 −X4|2
= |X1 −X4|−2|X2 −X4|−2(X1 −X4) · (X2 −X4)

= 2|X1 −X4|−2|X2 −X4|−2µ−1
c1
µ−1
c2
µ−1
c4

(|c1 − c4|2µc2 +

|c2 − c4|2µc1 − |c1 − c2|2µc4) .

Hence

X1 −X4

|X1 −X4|2
· X2 −X4

|X2 −X4|2
=

1

8

(
µc1µc4
|c1 − c4|2

+
µc2µc4
|c2 − c4|2

−
|c1 − c2|2µ2

c4

|c1 − c4|2|c2 − c4|2

)
,
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and by symmetry, two of the other summands in A ·B are

−1

8
(
µc2µc4
|c2 − c4|2

+
µc3µc4
|c3 − c4|2

−
|c2 − c3|2µ2

c4

|c2 − c4|2|c3 − c4|2
)

and

−1

8
(
µc1µc4
|c1 − c4|2

+
µc3µc4
|c3 − c4|2

−
|c1 − c3|2µ2

c4

|c1 − c4|2|c3 − c4|2
) .

The last summand in A ·B is

|X3 −X4|−2 =
1

4
µc3µc4|c3 − c4|−2 .

Thus, putting these four terms together and after some cancellations, we conclude

A ·B =
1

8
µ2
c4

(
|c1 − c3|2

|c1 − c4|2|c3 − c4|2
+

|c2 − c3|2

|c2 − c4|2|c3 − c4|2
− |c1 − c2|2

|c1 − c4|2|c2 − c4|2
) .

Therefore, we are finally able to obtain

cos(arg(X1, X2, X3, X4)) =
A ·B
|A||B|

=
|c1 − c3||c2 − c3|
|c1 − c4||c2 − c4|

(|c1 − c4|2|c2 − c3|2 +

|c1 − c3|2|c2 − c4|2 − |c1 − c2|2|c3 − c4|2) .

This proves our theorem.

From this and the work in [41] on Möbius transformations on Riemannian man-

ifolds, it is now easy to establish the result in that context. Let (M, g) be an

n-dimensional Riemannian manifold with metric g. We consider four orientation-

preserving Möbius transformations T1, T2, T3, T4 on M , which are generated as before

by vector fields V1, V2, V3, V4. The functions ui = |DTi|−1 are solutions of the equation

Hess(u) = ∆u
n
g. The family of all solutions to this last equation induces a warped

product decomposition of M as Q ×f P such that the submanifold Q, which is in-

tegral to the gradients of all the elements in the family, is of constant curvature.

Furthermore, the infinitesimal Möbius transformations V1, ..., V4 are tangent to the

leaves Q× {p}, which in turn are mapped into themselves by T1, ..., T4.

On the other hand, such a space Q is locally isometric to an open subset of Rm with

a metric g1 which is conformal to the euclidean metric g0. If we write g1 = e2σg0,
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then Bg0(σ) = 0 as well, and hence the Möbius groups in the metrics g1 and g0

coincide. The images in Rm of the vector fields V1, ..., V4 under the local isometry

will generate Möbius transformations R1, ..., R4, whose conformal factors will have by

Theorem 2.2.1 constant cross-ratio in the metric g0. Since the cross-ratio is clearly a

conformal invariant (a conformal change in the metric will just scale, at each point,

the 2-sphere through the four vector fields defining the cross-ratio), we conclude that

the cross-ratio in Q of grad(log u1), ..., grad(log u4) is constant. But these gradients

are tangent to Q, and therefore the 2-sphere through them lies in the tangent space

to Q. Hence their cross-ratio in Q is the same as their cross-ratio in M . We have

thus shown

Theorem 2.2.2 Let (M, g) be a Riemannian manifold, and let T1, T2, T3, T4 be orientation-

preserving Möbius transformations of M with nonconstant conformal factors ϕi =

log |DTi|. Then the cross-ratio (grad ϕ1, grad ϕ2, grad ϕ3, grad ϕ4) is constant.

This theorem can be regarded as a generalization of the original result about

solutions to a Ricatti equation. Indeed, the conformal factors ϕi = log |DTi| are

Schwarzian, i.e., Bg(ϕi) = 0, which can be thought of as a Ricatti equation in grad ϕi.

2.3 Holomorphicity of the cross-ratio

This section will be devoted to a brief study of the cross-ratio as a complex- valued

map on M which is determined by four vector fields on M . We believe that the

following two questions deserve attention:

(1) on a complex manifold M , what kind of complex-valued functions on M can be

expressed as cross-ratios; in particular, which holomorphic ones can be so represented;

(2) on complex manifolds, characterize 4-tuples of (holomorphic or meromorphic)

vector fields which give rise to holomorphic or meromorphic functions. The second

question has eluded us almost completely, even in Cn. We have found a conceptually

rather simple (but not easy to present formally) sufficient condition for a 4-tuple of

holomorphic vector fields to have a holomorphic cross-ratio. But we have not been

able to show its necessity, so instead of discussing this rather unsatisfactory result,
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we will center our attention on a partial answer to the first problem, namely when

M is a Riemann surface.

Theorem 2.3.1 Every meromorphic function on a Riemann surface is a cross-ratio.

Proof: On M , a meromorphic vector field V has in terms of a local uniformizer z an

invariant expression of the form A(z)∂z. Let f be a meromorphic function on M . We

want to find (holomorphic) vector fields V1, V2, V3, V4 such that in terms of the local

uniformizer,

f(z) =

(
A1(z)− A3(z)

A1(z)− A4(z)

)(
A2(z)− A4(z)

A2(z)− A3(z)

)
;

here Ai(z)∂z is the local representation of Vi.

This last calls for an explanation: we have defined cross-ratio on the real tangent

space of a manifold, whereas suddenly we are talking about the complexified tangent

space on M . This causes no problem, since it is not difficult to convince oneself that

the canonical identification of the real tangent space with the holomorphic part of

the complexification takes the cross-ratio to the expression in our last equation.

Because of the relation between vector fields and differentials, and since (V1−V3)+

(V2 − V4) = (V1 − V4) + (V2 − V3), the problem is equivalent to finding meromorphic

differentials ζ1, ζ2, ζ3, ζ4 such that

f =
(1/ζ1)(1/ζ2)

(1/ζ3)(1/ζ4)
=
ζ3ζ4

ζ1ζ2

,

with the condition that
1

ζ1

+
1

ζ2

=
1

ζ3

+
1

ζ4

.

In other words, we want to solve

f =
ζ3ζ4

ζ1ζ2

=
ζ3 + ζ4

ζ1 + ζ2

. (2.3.1)

We will show that solutions to (2.3.1) can be obtained from solutions to

1

f
= 1− gh , (2.3.2)
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where g, h are meromorphic functions on M not identically zero, and vice-versa. Since

(2.3.2) always has solutions (just take any g not identically 0 or 1, and then choose

h = g−1(1− f−1)), we conclude that a cross-ratio representation is always possible.

For the proof, assume first that g, h solve (2.3.2). Let g1 = 1− g and h1 = 1− h,

and choose ζ3 to be any nonzero meromorphic differential. Define

ζ1 = g1ζ3 , ζ2 = h1ζ3

and

ζ4 =
ζ1ζ2ζ3

ζ1ζ3 + ζ2ζ3 − ζ1ζ2

=
g1h1

g1 + h1 − g1h1

ζ3 .

The expression of ζ4 in terms of ζ1, ζ2, ζ3 is equivalent to the second equality in

(2.3.1), and we now check

ζ3ζ4

ζ1ζ2

=
1

g1 + h1 − g1h1

=
1

1− gh
= f .

On the other hand, assume that we have a solution of (2.3.1). Then, as mentioned

before, the second equality gives

ζ4 =
ζ1ζ2ζ3

ζ1ζ3 + ζ2ζ3 − ζ1ζ2

,

and therefore

f =
ζ2

3

ζ1ζ3 + ζ2ζ3 − ζ1ζ2

=
1

(ζ1/ζ3) + (ζ2/ζ3)− (ζ1/ζ3)(ζ2/ζ3)
.

This gives a solution of (2.3.2) with g = 1− (ζ1/ζ3) and h = 1− (ζ2/ζ3).



Chapter 3

Univalence criteria

3.1 The theorem of Osgood and Stowe

As mentioned in the introduction, the main purpose of this chapter is to derive several

classical and a few new univalence criteria from the general theorem of Osgood and

Stowe. Before stating their result, we need a few more definitions and preliminary

results.

By ||Bg(ϕ)|| we mean the norm of the Schwarzian tensor Bg(ϕ) with respect to g,

as a bilinear form on each tangent space, that is,

||Bg(ϕ)|| = max{|Bg(ϕ)(X, Y )| : |X| = |Y | = 1 } .

In cases, we will need to consider the norm of ||Bg(ϕ)|| in a metric ĝ = e2σg conformal

to g. Then

||Bg(ϕ)||ĝ = e−2σ||Bg(ϕ)|| .

Recall that a metric ĝ = e2ϕg is said to be Möbius (with respect to g) if Bg(ϕ) = 0.

The most general Möbius metric on a subset of Rn conformal to the euclidean metric

has

ϕ(x) = − log(a|x|2 + b · x+ c) , a, c ∈ R , b ∈ Rn .

These metrics have constant curvature 4ac− |b|2. In particular, the Poincaré metric

1

1− |z|2
|dz|

31
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on the disc and the spherical metric

2

1 + |x|2
|dx|

on Rn ∪ {∞} are Möbius.

Recall also that on a general manifold (M, g), the substitution u = e−ϕ converts

the equations Bg(ϕ) = 0, Bg(ϕ) = p into the linear equations

Hess(u) =
∆u

n
g

Hess(u) + up =
∆u

n
g (3.1.1)

respectively. Osgood and Stowe define U(M) to be the space of all solutions to the

first of these last two equations. If u ∈ U(M) with u > 0, then Bg(− log u) = 0.

Using stereographic coordinates we can write the round metric g1 on Sn as 4(1 +

|x|2)−2|dx|2 = e2ϕ0g0 on Rn ∪ {∞}. Since Bg0(ϕ0) = 0, we find from the addition

formula (1.2.4) and the solutions in Rn that the general solution to Bg1(ϕ) = 0 on Sn

is of the form

ϕ(x) = − log
A|x|2 +B · x+ C

|x|2 + 1
, A, C ∈ R, B ∈ Rn ,

in these coordinates, and a general u ∈ U(Sn) is of the form

u(x) =
A|x|2 +B · x+ C

|x|2 + 1
.

Then u−2g1 has curvature AC − 1
4
|B|2. We see from this that if u−2g1 is flat, then

u vanishes at precisely one point in Sn and hence is otherwise of one sign. This

important fact will be used later and Osgood and Stowe state it as the following

Lemma 3.1.1 For each p ∈ Sn there is a u ∈ U(Sn) such that u(p) = 0, u > 0 on

Sn/{p} and u−2g1 is flat.

We need one more formula. For a metric g on M let k = (n(n − 1))−1scal(g),

where scal is the scalar curvature. If ĝ = e2ϕg and k̂ is the corresponding quantity,

then

k̂ = e−2ϕ(k − 2

n
∆ϕ− (

n− 2

n
)|grad ϕ|2) . (3.1.2)

With this, we now present the result in [42].
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Theorem 3.1.1 Let (M, g) be a Riemannian manifold of dimension n ≥ 2 and ψ :

(M, g)→ (Sn, g1) a conformal local diffeomorphism. Suppose that the scalar curvature

of M is bounded above by n(n− 1)K for some K ∈ R, and that any two points in M

can be joined by a geodesic of length < δ for some 0 < δ ≤ ∞. If

||Sg(ψ)|| ≤ 2π2

δ2
− 1

2
K

then ψ is injective.

Proof: Let ϕ = log |Dψ|, so that ψ∗(g1) = e2ϕg = ĝ. Let x ∈ M, p = ψ(x) and

choose a function u ∈ U(Sn) vanishing at p, which is otherwise positive and is such

that u−2g1 is flat. Define

w = (u ◦ ψ)e−ϕ

on M . Then

w−2g = ψ∗(u−2g1)

is a flat metric on M/ψ−1(p). Using the addition formula (1.2.4), we find that

Bg(− logw) = Bg(ϕ− log(u ◦ ψ))

= Bg(ϕ) +Bĝ(− log(u ◦ ψ))

= Sg(ψ) + ψ∗(Bg1(− log u)) = Sg(ψ) ,

because Bg1(− log u) = 0. Hence from (3.1.1) we may write

Hess(w) = −wSg(ψ) +
∆w

n
g . (3.1.3)

(This last equation holds on all of M .)

Let k be (n(n − 1))−1 times the scalar curvature of g. Since the metric w−2g is

flat, equation (3.1.3) gives

0 = k − 2

n
∆(− logw)− n− 2

n
|grad logw|2

(3.1.4)

= k +
2

n

∆w

w
− |grad w|

2

w2
.
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The assumption on the scalar curvature then implies

∆w

n
≥ w

2
(K +

|grad w|2

w2
) . (3.1.5)

Now let γ : [0, l)→M, l ≤ δ, be a unit speed geodesic for g with γ(0) = x. Write

w(t) for w evaluated along γ. Then w(0) = 0 and w(t) > 0 for small positive t. From

(3.1.3), (3.1.5) and the bound on ||Sg(ψ)|| we obtain, whenever w(t) > 0,

w′′ = Hess(w)(γ̇, γ̇) = −wSg(ψ)(γ̇, γ̇) +
∆w

n

≥ −w
(

2π2

δ2
− 1

2
K

)
+

1

2
w

(
−K + (

w′

w
)2

)

= −2π2

δ2
w +

1

2

(w′)2

w
.

We write this as

(w1/2)′′ ≥ −π
2

δ2
w1/2 . (3.1.6)

To summarize, w(0) = 0, w(t) > 0 for sufficiently small positive t and (3.1.6)

holds whenever w(t) > 0. Since l ≤ δ, the simplest Sturm comparison theorem (see

e.g. [15], p.33) guarantees that w(t) cannot vanish again. But then ψ(γ(t)), t ∈ (0, l)

cannot equal ψ(x) and the theorem is proved.

We point out that the same theorem could be stated replacing (Sn, g1) by (Rn, g0)

or Hn with its metric of constant negative curvature. This follows from the trans-

formation law (1.2.4) and the fact that both g1 (in stereographic coordinates) and

the hyperbolic metric are Möbius with respect to the euclidean metric. Finally, let

k(x) be the scalar curvature of g at x ∈ M . It is easy to see that the proof given

by Osgood and Stowe works equally well only assuming that at each point in M the

norm of the Schwarzian derivative of ψ is bounded above by

2π2

δ2
− k(x)

2n(n− 1)
.

This is the form of the theorem which we shall use in order to establish the various

injectivity criteria in the unit disc.
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3.2 Injectivity criteria in the unit disc

Throughout this section, D will denote the open unit disc in the plane. We will apply

Theorem 3.1.2 to D with metrics conformal to the euclidean metric g0 which are of

the form

g =
e2σ

(1− |z|2)2t
g0 , t > 0 . (3.2.1)

Epstein’s general theorem of univalence in [22] will follow by setting t = 1, and

an important case will be when σ is harmonic. In order to apply Theorem 3.1.2, we

will require g to have nonpositive curvature and also impose a growth condition on

the coefficient eσ(1− |z|2)−t that will ensure that any two points in D can be joined

by a geodesic in the metric g. We start out by establishing the following

Lemma 3.2.1 Let g be as in (3.2.1). If for some 0 < r < 1

|σz(z)| ≤ t|z|
1− |z|2

(3.2.2)

for all r ≤ |z| < 1, then any two points in D can be joined by a geodesic in the metric

g.

We point out that when t = 1, (3.2.2) is esentially one of the conditions Epstein

imposes to obtain his general result. It is interesting to note that in his work, this

condition is required to assure completeness of certain surfaces in hyperbolic space.

Here, it almost ensures the completeness of the metric g (the boundary of D might

still be at finite distance). The other condition that Epstein imposes is the negativity

of the curvature of g (the sign of this curvature is reflected on certain bounds on

the principal curvatures of the surfaces mentioned above). In our case, it is needed

to make sure that an inequality on the Schwarzian derivative as in Theorem 3.1.2 is

possible (remember that δ might be infinite).

Proof: Let η = σ− t log(1− |z|2). Then (3.2.2) guarantees that the radial derivative

of η is nonegative for |z| ≥ r. Given now two points x, y ∈ D, we seek a geodesic

in the metric g joining x and y. Let d = infLg(γ), where the infimum is taken

over all smooth curves γ in D that join x to y, and Lg(γ) is the length of γ in g.
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Under the hypothesis of the lemma, the conformal factor eη eventually increases as

one approaches ∂D. Hence, given ε > 0, there exists a compact set K ⊂ D such that

any curve γ joining x to y with Lg(γ) < d+ ε is completely contained in K. We can

therefore find a minimizing sequence {γn} converging to the desired geodesic.

We now state the main result in this section.

Theorem 3.2.1 Let g as in (3.2.1) have negative curvature and satisfy (3.2.2). Let

δ ≤ ∞ be the diameter of (M, g), and let ψ be analytic and locally injective in D. If∣∣∣∣∣(1− |z|
2)2(σzz − σ2

z − 1
2
{ψ, z})− 2tz̄(1− |z|2)σz + t(1− t)z̄2

t+ (1− |z|2)2σzz̄

∣∣∣∣∣ ≤
1 +

π2e2σ(1− |z|2)2(1−t)

δ2(t+ (1− |z|2)σzz̄)
(3.2.3)

then ψ is univalent.

We remark that in general δ = ∞ for t ≥ 1. On the other hand, for t < 1 and

certain choices of σ, the diameter δ will be finite. We will come back to this point

later.

Proof: As mentioned before, we shall derive (3.2.3) from the theorem of Osgood

and Stowe by computing the Schwarzian derivative of ψ in the metric g. The scalar

curvature of g is given by

k = −8e−2ηηzz̄ = −8e2η(t+ (1− |z|2)2σzz̄) ,

where as before, η = σ − t log(1− |z|2). We also remind the reader that in this case,

the scalar curvature equals twice the standard Gaussian curvature.

Let ϕ = log |ψ′|. Then,

ψ∗(g0) = e2ϕg0 = e2(ϕ−η)g ,

and we therefore have to compute Bg(ϕ− η). Using the addition formula (1.2.4), we

have

Bg(ϕ− η) = Bg(−η) +Bg0(ϕ) ,
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and since

0 = Bg(η − η) = Bg(−η) +Bg0(η) ,

we conclude that

Bg(ϕ− η) = Bg0(ϕ)−Bg0(η) .

Now, by definition

||Bg(ϕ− η)|| = e−2η||Bg(ϕ− η)||g0 = e−2η||Bg0(ϕ)−Bg0(η)||g0 . (3.2.4)

Computing in standard coordinates, Bg0(ϕ)−Bg0(η) is a matrix of the form α β

β −α

 ,

and its euclidean norm is |α + iβ|. By (1.2.3), Bg0(ϕ) will be represented by {ψ, z}
and Bg0(η) will be given by A+ iB, where

A = ηxx − η2
x −

1

2
(ηxx + ηyy − η2

x − η2
y) ,

B = ηxy − ηxηy .

A straightforward calculation yields

A+ iB = 2σzz − 2σ2
z −

4tz̄σz
1− |z|2

+
2t(1− t)z̄2

(1− |z|2)2
.

Theorem 3.1.2 as in the remark after its statement in the last section reads as

||Sg(ψ)|| ≤ 2π2

δ2
+ 2

t+ (1− |z|2)σzz̄
e2η

.

From this, equation (3.2.4) and the last computations, we obtain (3.2.3).

If in (3.2.3) we let t = 1, then setting δ =∞ we obtain

Corollary 3.2.1 (Epstein) Let g as in (3.2.1) have negative curvature and satisfy

(3.2.2). If ψ is analytic and locally injective in D and satisfies

∣∣∣∣∣(1− |z|
2)2(σzz − σ2

z − 1
2
{ψ, z})− 2z̄(1− |z|2)σz

1 + (1− |z|2)2σzz̄

∣∣∣∣∣ ≤ 1 (3.2.5)

then ψ is univalent.
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As Epstein points out, an important case of (3.2.5) is when σ is harmonic, i.e.,

σ = log |h′| for some h analytic in D. The inequality (3.2.5) then becomes

∣∣∣∣∣{ψ, z} − {h, z}+
2z̄

(1− |z|2)

h′′(z)

h′(z)

∣∣∣∣∣ ≤ 2

(1− |z|2)2
.

We would like to let σ be harmonic in (3.2.3). Then for η = σ− t log(1− |z|2) the

metric g = e2ηg0 has in any case negative curvature, but we need σ to satisfy (3.2.2)

for the existence of a δ ≤ ∞. With σ = log |h′| as before, (3.2.2) translates to

|h
′′(z)

h′(z)
| ≤ 2t|z|

1− |z|2
. (3.2.6)

Assuming this, we conclude

Corollary 3.2.2 Let ψ be analytic and locally injective in D. If∣∣∣∣∣{ψ, z} − {h, z}+
2tz̄

(1− |z|2)

h′′(z)

h′(z)
− 2t(1− t)z̄2

(1− |z|2)2

∣∣∣∣∣ ≤ 2t

(1− |z|2)2
+

2π2e2η

δ2
(3.2.7)

then ψ is univalent.

In (3.2.7), we now let h(z) = z. As mentioned before, δ = ∞ if t ≥ 1, but for

t < 1

δ = 2
∫ 1

0

dx

(1− x2)t
.

This integral can be expressed in terms of the Γ-function as

δ = π
1
2

Γ(1− t)
Γ(3

2
− t)

.

Hence we conclude

Corollary 3.2.3 Let ψ be analytic and locally univalent in D. If either∣∣∣∣∣{ψ, z} − 2t(1− t)
(1− |z|2)2

z̄2

∣∣∣∣∣ ≤ 2t

(1− |z|2)2
, t ≥ 1 (3.2.8)

or ∣∣∣∣∣{ψ, z} − 2t(1− t)
(1− |z|2)2

z̄2

∣∣∣∣∣ ≤ 2t

(1− |z|2)2
+

2π

(1− |z|2)2t

(
Γ(3

2
− t)

Γ(1− t)

)2

, t < 1 (3.2.9)

then ψ is injective.
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We make two remarks on this corollary. If we let t = 2 in (3.2.8), then we obtain∣∣∣∣∣{ψ, z}+
4z̄2

(1− |z|2)2

∣∣∣∣∣ ≤ 4

(1− |z|2)2
(3.2.10)

as a sufficient condition for ψ to be univalent. This can be used to give another proof

of the criterion announced by Pokornyi [44] and proved by Nehari [38], namely that

|{ψ, z}| ≤ 4

1− |z|2
(3.2.11)

implies the univalence of ψ. In fact, if (3.2.11) holds, then∣∣∣∣∣{ψ, z}+
4z̄2

(1− |z|2)2

∣∣∣∣∣ ≤ 4

1− |z|2
+

4|z|2

(1− |z|2)2
=

4

(1− |z|2)2
,

i.e., (3.2.10) holds.

The inequality (3.2.9) interpolates the criteria of Nehari:

|{ψ, z}| ≤ π2

2
and |{ψ, z}| ≤ 2

(1− |z|2)2
,

which are obtained from (3.2.9) as limiting cases when t→ 0 and t→ 1.

Both of Nehari’s criteria are sharp, with extremal functions that are geometrically

simple. I therefore consider the following problem of interest: determine whether or

not the interpolating criteria are sharp as well, and if they are, try to choose simple

extremal functions varying smoothly in t.

Let now ψ = h in (3.2.7), and assume that the metric ψ satisfies (3.2.6). We then

conclude

Corollary 3.2.4 If ψ satisfies∣∣∣∣∣zψ′′ψ′ (1− |z|2)− (1− t)|z|2
∣∣∣∣∣ ≤ 1 , (3.2.12)

then ψ is injective.

Inequalities (3.2.10) and (3.2.12) resemble two criteria of Ahlfors [1] that imply

the injectivity of ψ, namely∣∣∣∣∣{ψ, z} − 2c(1− c)z̄2

(1− |z|2)2

∣∣∣∣∣ ≤ 2t|c|
(1− |z|2)2

(3.2.13)
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with |c− 1| ≤ t < 1, c ∈ C, and∣∣∣∣∣zψ′′ψ′ (1− |z|2) + c|z|2
∣∣∣∣∣ ≤ t < 1 (3.2.14)

with |c| ≤ t, c ∈ C.

Ahlfors actually shows that either condition implies that ψ has a 1+t
1−t -quasiconformal

extension to C. These two criteria are obtained as corollaries in [9]. The difficulty

in deriving (3.2.13) and (3.2.14) from our work lies in the fact that c is complex. On

the other hand, (3.2.13) and (3.2.14) can be used to give the following application of

(3.2.10) and (3.2.12).

Theorem 3.2.2 Let ψ be analyic and locally injective in D.

(A) If ψ satisfies (3.2.12) with |t− 1| ≤ 1, then

φ(z) =
∫ z

0
(ψ′(ζ))αdζ

is univalent for all |α| < 1.

(B) If ψ satisfies (3.2.10), then any solution of {φ, z} = α{ψ, z} is univalent for

all |α| < 1.

Proof: Under the assumption in (A), the function φ satisfies (3.2.14) if |α| < 1.

Similarly, if the hypothesis in (B) holds, then φ will satisfy (3.2.13) for |α| < 1.

Unfortunately, we were not able to use this to answer the question posed by

Pfaltzgraff in his article on the univalence of the integral of (ψ′)α [43]. In that paper,

the author shows that a univalent function ψ in D gives rise to univalent functions

ψα defined by

ψα(z) =
∫ z

0
(ψ′(ζ))αdζ

for all |α| ≤ 1
4
. Royster exhibited counterexamples for any |α| > 1

3
, α 6= 1, and thus

the question of the univalence of ψα remains open for 1
4
< |α| ≤ 1

3
.

As a last application in this section, we let t = 0 in (3.2.7). In order to obtain

a valid criterion we have to change the condition that ensures the existence of a

δ ≤ ∞. Such a geodesic diameter will exist if for instance, h(D) is convex; for then

h is univalent and an isometry between (D, g) and (h(D), g0). Thus, δ equals the
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euclidean diameter of h(D). We can take h to be a Möbius transformation h(z) = az+b
cz+d

with ad− bc = 1 and |d| > |c|. Then we obtain as a sufficient condition for univalence

the inequality

|{ψ, z}| ≤ π2

2

(|d|2 − |c|2)2

|cz + d|4
. (3.2.15)

3.3 The simply-connected case

Here, we shall derive from the theorem of Osgood and Stowe a sufficient condition

for the univalence of a locally schlicht analytic map defined on a simply-connected

domain D1. This condition will come as a counterpart to the necessary condition for

such global univalence established in [14], namely

| 1
π
Uψ(z, z) + l(z, z)| ≤ K(z, z̄) . (3.3.1)

The terms involved are defined as follows: let

Uψ(z, ζ) =
∂2

∂ζ∂z
log

ψ(z)− ψ(ζ)

z − ζ
,

so that

Uψ(z, z) = −1

6
{ψ, z} .

Let h(z, ζ) be the Green’s function for the Dirichlet problem in D1. Then

K(z, ζ̄) = − 2

π

∂2

∂z∂ζ̄
h(z, ζ)

is the Bergman kernel, and the function l is defined by

l(z, ζ) =
1

π

1

(z − ζ)2
+

2

π

∂2

∂z∂ζ
h(z, ζ) .

It is not dificult to see that the singularity of h disappears when this function is

differentiated as in the equation relating it to the kernel K. Also, by a theorem in

[14], l is actually regular in D1.

Let h0, K0 and l0 denote the corresponding quantities when D1 = D is the unit

disc. Since

h0(z, ζ) = log

∣∣∣∣∣1− zζ̄z − ζ

∣∣∣∣∣ ,
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one finds that

K0(z, ζ̄) =
1

π
(1− zζ̄)−2

and

l0(z, ζ) = 0 .

Thus on D, (3.3.1) gives the criterion of Nehari, namely that

|{ψ, z}| ≤ 6

(1− |z|2)2

is necessary for the univalence of ψ.

Let now F be a conformal diffeomorphism of D1 onto D. Then,

h(z, ζ) = h0(F (z), F (ζ)) ,

and in differentiating this equation one obtains

K(z, ζ̄) = K0(F (z), F (ζ))F ′(z)F ′(ζ)

and

l(z, ζ) = − 1

π

(
F ′(z)F ′(ζ)

(F (z)− F (ζ))2
− 1

(z − ζ)2

)
.

Hence, (K(z, z̄))1/2|dz| is the Poincaré metric on D1 and l(z, z) = − 1
π
{ψ, z}. We now

state

Theorem 3.3.1 With the notation as before, if

| 1
π
Uψ(z, z) + l(z, z)| ≤ 1

3
K(z, z̄) (3.3.2)

then ψ is univalent.

Proof: We will derive (3.3.2) from Theorem 3.1.2 applied to D1 with its Poincaré

metric g = K(z, z̄)g0. Let ϕ = log |ψ′|, then

ψ∗(g0) = e2ϕg0 = e2ϕK−1g

and thus

Sg(ϕ) = Bg(ϕ−
1

2
logK) = Bg(−

1

2
logK) +Bg0(ϕ) = Bg0(ϕ)−Bg0(

1

2
logK) .
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By the conformal invariance of K,

1

2
logK =

1

2
log(K0 ◦ F ) + σ

where σ = log |F ′|. Hence,

Bg0(
1

2
(logK)) = Bg0(

1

2
log(K0 ◦ F ) + σ)

= Bg0(σ) +Be2σg0(
1

2
log(K0 ◦ F ))

= Bg0(σ) + F ∗(Bg0(
1

2
logK0))

= Bg0(σ)

because Bg0(
1
2
(logK0)) = 0. Therefore

Sg(ψ) = Bg0(ϕ)−Bg0(σ) ,

and Theorem 3.1.2 becomes

||Sg(ψ)|| ≤ 2π

or

|{ψ, z} − {F, z}| ≤ 2πK(z, z̄) ,

which gives (3.3.2).

As mentioned in the introduction, (3.3.1) holds also as a necessary condition for

univalence on multiply connected domains. It was natural to seek a corresponding suf-

ficient condition on such domains by using Theorem 3.1.2 probably with the Bergman

metric (K(z, z̄))1/2|dz|. This metric is complete and has curvature ≤ −4 (see [48]).

After spending some time with the pertinent calculations, we became aware of the

following instance of the Theorem 3.1.2 :

Theorem 3.3.2 Let (M, g) be a Riemannian manifold of dimension n ≥ 2 and ψ :

(M, g)→ (Sn, g1) a conformal local diffeomorphism. Suppose that the scalar curvature

of M is bounded above by n(n− 1)K for some K ∈ R, and that any two points in M

can be joined by a geodesic. If

||Sg(ψ)|| ≤ −1

2
K

then M is simply-connected.
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Proof: Let (M̃, g̃) be the universal cover of M with the metric g̃ = π∗(g), where

π : M̃ → M is the covering map. Then the lift ψ̃ = ψ ◦ π : (M̃, g̃) → (Sn, g1) is a

conformal local diffeomorphism and satisfies

||Sg̃(ψ̃)|| ≤ −1

2
K̃ ,

where n(n − 1)K̃ = n(n − 1)K is an upper bound for the scalar curvature of g̃.

Therefore by the theorem of Osgood and Stowe, ψ̃ is univalent, which implies that π

has degree 1. This proves the theorem.

Since the Bergman metric is complete, a theorem of injectivity derived from The-

orem 3.1.2 in this metric would have to hold with δ = ∞. But then by Theorem

3.3.2, a domain for which there exists an analytic function ψ satisfying this injectiv-

ity criterion would be forced to be simply-connected. In other words, such a criterion

will be vacuous on planar domains of higher connectivity.



Chapter 4

Quasiconformal reflections

4.1 Quasiconformal reflections in the plane

It is not an uncommon phenomenon that a stronger form of a given injectivity criterion

serves further as a criterion for the existence of quasiconformal extensions. Classical

examples are [1], [27] and more recently, [22] and [9].

In this chapter we will use Epstein’s techniques for constructing quasiconformal

reflections in hyperbolic space to show that the theorem of Osgood and Stowe falls

under the category mentioned above. At this point, we present a brief summary of

the main ideas that we shall require from the work in [22]. We will omit proofs and

refer the reader to the source [22] for more details.

Let Σ be a complete surface in hyperbolic 3-space. We will use the ball model B3

for this space. A main theorem in [22] asserts that if the principal curvatures k1, k2

of Σ satisfy

|ki| < 1 ,

then Σ is properly embedded and diffeomorphic to a disc. Furthermore, the asymp-

totic boundary ∂∞Σ is a Jordan curve on the 2-sphere S2.

The following is the basic idea used to construct reflections in S2 associated to

such surfaces Σ. Let N be a unit normal to Σ. Given p ∈ Σ, one can follow the

geodesic through p normal to Σ in both directions for infinite time. This defines then

the forward and backward Gauss images G+(p) and G−(p) as the asymptotic limits on

45



CHAPTER 4. QUASICONFORMAL REFLECTIONS 46

S2. Another important result of Epstein in [22] is that under the present assumptions

on Σ, i.e., completeness and the bounds on the principal curvatures, the maps G+

and G− so defined are in fact diffeomorphisms onto open and disjoint subsets Ω+ and

Ω− contained in S2. In addition, ∂Ω+ = ∂Ω− = ∂∞Σ and

S2 = Ω+ ∪ Ω− ∪ ∂∞Σ .

One can therefore define the reflection

Λ = G− ◦G−1
+ : Ω+ → Ω− ,

which fixes pointwise the curve ∂∞Σ.

By analyzing the behavior of the principal curvatures of the surfaces Σs which

evolve from Σ under the parallel flow, Epstein obtains the following relevant formula

relating the quasiconformal distortion K of Λ to the principal curvatures of Σ:

K = max


∣∣∣∣∣1− k1

1 + k1

∣∣∣∣∣
1
2
∣∣∣∣∣1 + k2

1− k2

∣∣∣∣∣
1
2

;

∣∣∣∣∣1 + k1

1− k1

∣∣∣∣∣
1
2
∣∣∣∣∣1− k2

1 + k2

∣∣∣∣∣
1
2

 .

Here K is to be evaluated at the point θ = G+(p) ∈ Ω+ while the right-hand side

is at the point p. From this one concludes immediately that if |ki| ≤ t < 1, then

the induced reflection Λ is actually quasiconformal on the sphere and so ∂∞Σ is a

quasicircle.

As Epstein shows in [22], the surface Σ can be recovered as the envelope of the

family of its tangent horospheres. Such a horosphere will be denoted by H(θ, ρ(θ)),

where θ ∈ Ω+ is the point of contact with S2 of the given horosphere tangent to Σ.

The horospheric radius ρ(θ) is the hyperbolic distance from a fixed origin ϑ ∈ B3 to

the horosphere H(θ, ρ(θ)), i.e.,

|ρ| = inf{ d(ϑ, q) : q ∈ H(θ, ρ)} .

The convention on the sign of ρ is that it be positive if ϑ lies outside the horosphere

and negative otherwise. Epstein also shows that the bounds |ki| < 1 on the principal

curvatures of Σ guarantee that a point of tangency between a horosphere and Σ is

unique. In summary, given a point θ ∈ Ω+, there exists a unique real number ρ(θ)
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such that the horosphere H(θ, ρ(θ)) is tangent to Σ. Results similar to these, that

we shall require for the main theorem in this chapter, are true in higher dimensional

hyperbolic space.

As a preliminary case, we consider on the unit disc D metrics of the form g =

e2σ(1− |z|2)−2g0 that satisfy

(I) 1 + (1− |z|2)2σzz̄ > 0

and

(II) |σz|(1− |z|2) ≤ t|z|

for some 0 ≤ t < 1.

These kind of metrics were used by Epstein in [22], and we shall show that his

main theorem there can be regarded as a strong version of Theorem 3.1.2. Let k(g)

be the Gauss curvature of the metric g, i.e.,

k(g) = −4e−2σ(1 + (1− |z|2)2σzz̄) ,

which by (I) is strictly negative. Then

Theorem 4.1.1 (Epstein) Let ψ be analytic and locally univalent in D. If

||Sg(ψ)|| ≤ −1

2
tk(g) (4.1.1)

then ψ is univalent and admits a 1+t
1−t-quasiconformal extension to entire plane.

Proof: We remark that (4.1.1) is a pointwise inequality. Because of (II), the metric

g is complete and therefore any two points in D can be joined by a geodesic in the

metric g. Hence the univalence of ψ follows from the criterion of Osgood and Stowe.

The proof is basically the same as in Theorem 3.2.1. In fact, a calculation as in

that theorem shows that

4
||Sg(ψ)||

k
=

∣∣∣∣∣(1− |z|
2)2(σzz − σ2

z − 1
2
{ψ, z})− 2z̄(1− |z|2)σz

1 + (1− |z|2)2σzz̄

∣∣∣∣∣ .
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We outline the argument in [22]. Assume first that ψ is regular in D̄. A surface Σ

is constructed as the envelope of the family of horospheres {H(θ, ρ(θ)) : θ ∈ ψ(D)},
where the support function ρ is determined by the equation

e2ρg1 = φ∗(g)

with φ = ψ−1. Most of the work relies on showing that Σ is complete and has principal

curvatures |ki| < 1. This will then guarantee that the reflection Λ is quasiconformal,

which enables one to define the desired extension of ψ by appropriate conjugation.

The completeness of Σ follows essentially from the fact that ρ → ∞ near ∂ψ(D)

(it is here that one needs ψ to be regular on D̄). The principal curvatures of Σ are

estimated by computing the Beltrami coefficient of Λ. In the upper half model H3 of

hyperbolic space with ∂H3 = C ∪ {∞}, this coefficient is given by

µ =
fzz − f 2

z

fzz̄
,

where the function f is defined by f = ρ ◦ S−1 − log(1 + |x|2) and x = S(θ) is the

stereographic coordinate in the plane. Because the conformal factor − log(1 + |x|2)

arising from the spherical metric is Móbius with respect to g0, and using the addition

formula (1.2.4) it is not difficult to verify that

|µ| = 4
||Bg1(ρ)||g2
|τ |

,

where τ is the curvature of the metric g2 = e2ρg1. Using (1.2.4) once more, one finally

finds that

||Sg(ψ)|| = ||Bg1(ρ)||g2

and thus by (4.1.1), ||µ||∞ ≤ t.

It is this last fact, namely that |µ| equals the g2-norm of the euclidean Schwarzian

tensor of ρ divided by the curvature of the metric g2, what constitutes the essence of

the corresponding theorem in arbitrary dimensions.

In the general case when ψ is not necessarily regular on D̄, one has to look at a

sequence of converging quasiconformal extensions of functions ψn(z) = ψ(rnz) , rn ↑
1.
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There is a very geometric way in which the Schwarzian tensor of Osgood and

Stowe comes up, and it is also in this context of surfaces in hyperbolic 3-space. Let

ψ be a locally injective analytic map defined in the unit disc D. The best Möbius

approximation to ψ at z0 ∈ D is defined to be the unique Möbius transformation

F such that F (z0) = ψ(z0), F ′(z0) = ψ′(z0) and F ′′(z0) = ψ′′(z0). In other words,

F−1 ◦ ψ has the same 2-jet as the identity at z0 and furthermore, it is not difficult to

verify that (F−1 ◦ ψ)′′′(z0) = {ψ, z0}.
Our purpose is to recover the Schwarzian derivative of ψ in a slightly different way,

as follows. For each z ∈ D, the aforementioned Möbius transformation F z can be

extended uniquely to a Möbius selfmap of the upper half space H3. We will denote

this extension again by F z. Let T (z) be the point on the unit sphere Σ0 where a

horosphere tangent at z is internally tangent to Σ0.

As z varies through D, the point R(z) = F z(T (z)) describes a surface Σ in H3,

and we will show

Theorem 4.1.2 The pullback under R of the second fundamental form h of Σ in the

hyperbolic metric equals the Schwarzian tensor of ψ in the euclidean metric.

Proof: The proof is a rather long but hopefully amusing calculation. The extension

of F (ζ) = aζ+b
cζ+d

to an isometry of hyperbolic space is given by

F (ζ + sj) =
(aζ + b)(cζ + d) + ac̄s2 + sj

|cζ + d|2 + |c|2s2
, (4.1.2)

where we have normalized so that ad − bc = 1 [11]. Also, j stands for the point

(0,0,1). The explicit expression for T (z) is

T (z) =
2z

1 + |z|2
+

1− |z|2

1 + |z|2
j . (4.1.3)

We shall work at z = 0, and since the second fundamental form h is invariant under

the isometries of H3, we can assume that ψ(0) = 0, ψ′(0) = 1 and ψ′′(0) = 0.

Therefore F 0 is the identity and we will compute first h(V, V ) for any tangent vector

V to Σ at j. At this point, the hyperbolic and euclidean metrics coincide and thus

h(V, V ) = 〈∇̂V V,N〉 , (4.1.4)
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where 〈 , 〉 is the euclidean inner product, N the upward unit normal to Σ and ∇̂
the hyperbolic covariant derivative. Let z0 = x0 + iy0 be fixed and let zt = T (tz0).

We consider

V =
d

dt
R(tz0) =

d

dt
(F tz0(zt)) = DF tz0(zt)(z

′
t) +

∂F tz0

∂t
(zt) , (4.1.5)

where DF tz0(zt) is the differential of F tz0 at zt, and where ∂F tz0
∂t

stands for the element

of the Lie algebra of the group of isometries of H3. We have

∂F z

∂t
=
∂F z

∂z

∂z

∂t
+
∂F z

∂z̄

∂z̄

∂t
. (4.1.6)

Here, ∂F z

∂z
and ∂F z

∂z̄
means differentiating the parameters a, b, c, d in (4.1.2). It is

easy to see that a, b, c, d depend holomorphically on z, and using (4.1.3) we obtain at

t = 0 (where a = d = 1 , b = c = 0)

V = 2z0 + c′z0 , c
′ =

dc

dz
(0) . (4.1.7)

Hence the tangent plane to Σ at j is horizontal, and so N = j.

If we write the hyperbolic metric as e2ϕ〈 , 〉, then

∇̂V V =
dV

dt
+ 2〈V, grad ϕ〉 − 〈V, V 〉grad ϕ , (4.1.8)

with grad ϕ euclidean. At j , grad ϕ = −j and so

∇̂V V =
dV

dt
+ 〈V, V 〉j . (4.1.9)

In differentiating (4.1.5) we conclude

dV

dt
= DF tz0(zt)(z

′′
t ) + 2

∂(DF tz0(zt))

∂t
(z′t) +

∂2F tz0

∂t2
(zt) +D2F tz0(z′t, z

′
t) . (4.1.10)

Since F 0 is the identity, at t = 0 we have DF tz0(zt)(z
′′
t ) = z′′t and the last term

on the right-hand side (the Hessian of F tz0) vanishes. Thus we are left to calculate
∂2F tz0
∂t2

(zt) and ∂(DF tz0 (zt))
∂t

(z′t) at t = 0. Most of the computations are tedious but

straightforward, and we just point the important steps.
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We use the chain rule to differentiate (4.1.6), and from (4.1.2) one finds that at

t = 0,

∂2F tz0

∂t2
(zt) = z2

0{b′′ − 2b′d′ + (2d′2 − d′′)j}+ z̄2
0{c̄′′ − 2c̄′d̄′ + (2d̄′2 − d̄′′)j}

+|z0|2{a′c̄′ − d′c̄′ + (|d′|2 − |c′|2)j} . (4.1.11)

From (4.1.2), with ζ = x+ iy and F z(ζ + sj) = u+ iv + wj we can compute the

differential of F z to find

DF z =


ux uy us

vx vy vs

wx wy ws

 , (4.1.12)

with the following expressions

ux + ivx = (|c|2 + |d|2)−2{(|c|2 + |d|2)(ad̄+ bc̄)− (ac̄− bd̄)(cd̄+ c̄d)} ,

uy + ivy = (|c|2 + |d|2)−2{(|c|2 + |d|2)(ad̄− bc̄)− (ac̄+ bd̄)(cd̄− c̄d)} ,

us + ivs = 2(|c|2 + |d|2)−2c̄d̄ , (4.1.13)

and

wx = −(|c|2 + |d|2)−2(cd̄+ c̄d) ,

wy = −i(|c|2 + |d|2)−2(cd̄− c̄d) ,

ws = (|c|2 + |d|2)−2(|d|2 − |c|2) . (4.1.14)

We now differentiate the components of DF z using the chain rule and, as before,

the fact that a, b, c, d depend on z analytically. Setting t = 0 finally yields

∂

∂t
DF tz0(zt) =



Re{z0(a′ − d′)} Re{z0(a′ − d′)} Re{2z̄0c̄′}

Im{z0(a′ − d′)} Im{z0(a′ − d′)} Im{2z̄0c̄′}

−Re{2z̄0c̄′} −Im{2z̄0c̄′} −Re{2z0d
′}


. (4.1.15)
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Before going back to equation (4.1.8), we will find the appropriate relations be-

tween a′, b′.c′, d′ and d′′ at t = 0. By construction,

ψ(z) =
az + b

cz + d
, ψ′(z) =

1

(cz + d)2

and

ψ′′(z) =
−2c

(cz + d)3
. (4.1.16)

(Remember that we have chosen ad − bc = 1.) Therefore ψ′′′(0) = −2c′(0) and

because of our normalizations on ψ, this gives {ψ, 0} = −2c′(0).

On the other hand, we can explicitly solve for c and d to get

4c2 = (
ψ′′

ψ′
)2 , cz + d = −2c(

ψ′

ψ′′
) ,

from which

d′(0) = 0 and d′′(0) = −c′(0) .

From ad−bc = 1 we get a′d+ad′−b′c−bc′ = 0, and thus at z = 0, a′ = −d′ = 0. The

rest of the unknown in equation (4.1.10), i.e., b′, b′′ and c′′, actually do not matter

since we are going to take inner product with j. Aside from this, we want to derive

an interesting equality. From

ψ(z) =
az + b

cz + d
,

we get by differentiating

ψ′(z) =
1

(cz + d)2
+

(cz + d)(a′z + b′)− (az + b)(c′z + d′)

(cz + d)2
,

and since by construction

ψ′(z) =
1

(cz + d)2
,

we conclude that

ψ(z) =
az + b

cz + d
=
a′z + b′

c′z + d′
,

that is, the best Möbius approximation to ψ at z and the Möbius transformation

determined by a′(z), b′(z), c′(z) and d′(z) agree at z. Back to our calculations, using
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equations (4.1.8) through (4.1.12) and that z′t(0) = 2z0 and z′′t (0) = −4|z0|2j, we can

now write

∇̂V V =
(
−4|z0|2 − 4(αx0 + βy0)− (|c′|2|z0|2 − 2Re{c′z2

0}) + |V |2
)
j + vhor .

Here 〈vhor, j〉 = 0 and α + iβ = 2c̄′z̄0. Since V = 2z0 + c̄′z̄0 we have

|V |2 = (4 + |c′|2)|z0|2 + 4Re(c′z2
0) .

Thus finally

h(V, V ) = 〈∇̂V V, j〉

= 4(αx0 + βy0)− 6Re(c′z2
0)

= 2{c1(x2
0 − y2

0)− 2c2x0y0}

where

c1 + ic2 = c′ = −1

2
{ψ, 0} .

Therefore the Schwarzian tensor of ψ at 0 is given by

S(ψ) = −2

 c1 −c2

−c2 −c1

 ,

and we conclude that

h(V, V ) = S(ψ)(z0, z0) , V = R∗(z0) .

Since both forms h and S(ψ) are symmetric, this shows that

h(R∗(z0), R∗(z1)) = S(ψ)(z0, z1) ,

that is

R∗(h) = S(ψ) .

This finishes the proof of the theorem.

The principal curvatures of Σ are the eigenvalues of the form h, i.e., the maximum

and minimum of h(V, V ) for unit V in the hyperbolic metric. At j this metric equals
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the euclidean metric, and we thus have to find the extrema of h(V,V )
|V |2 . We have already

seen that for V = R∗(z),

|V |2 = (4 + |c′|2)|z|2 + 4Re(c′z2)

= (4 + |c′|2)|z|2 − 2S(ψ)(z, z) .

Note that the forms R∗(h) and 〈 , 〉 share eigenspaces, and since the eigenvalues

of S(ψ) are 2|c′|2 and −2|c′|2, that is, |{ψ, z}| and −|{ψ, z}|, we conclude that the

principal curvatures of Σ are bounded in absolute value by

2|c′|
(2− |c′|)2

=
4|{ψ, z}|

(4− |{ψ, z}|)2
.

In fact, one can find these curvatures explicitly by using the method of Lagrange

multipliers to find the extrema of

S(ψ)(z, z)

(4 + |c′|2)|z|2 − 2S(ψ)(z, z)

for |z| = 1. They are then given by

k1 =
2|c′|

(2− |c′|)2
= −k2 .

Then, for example, the surface Σ is minimal in the euclidean metric if k1 + k2 = 2,

that is , when

|c′|2 = 4(2 +
√

3) or |c′|2 = 4(2−
√

3) .

In other words, this will happen if

|{ψ, z}| = 4(2 +
√

3)
1
2 or |{ψ, z}| = 4(2−

√
3)

1
2 .

We make a final remark on envelopes and horospheres. The unit sphere Σ0 is

the envelope of a family of horospheres tangent to the unit disc in the plane. The

horospheric radius ρ(z) of the horosphere Hz tangent to D at z can be computed to

be

ρ(z) = log
1 + |z|2

1− |z|2
.
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(This is just the hyperbolic distance from j to Hz.) One could expect the surface Σ to

be the envelope of the horospheres F z(Hz), but in general, if the principal curvatures

of Σ are in absolute value bigger than 1, then there is no guaranty that F z(Hz) will

be tangent to Σ or tangent at a single point. In any case, one can derive the following

formula: if we denote by ρ(F (Hz)) the horospheric radius of the image of Hz under

a Möbius transformation F , then

ρ(F (Hz)) = log
1 + |F (z)|2

1− |z|2
− log |F ′(z)| .

If we let F = F z, we conclude that

ρ(F z(Hz)) = log
1 + |ψ(z)|2

1− |z|2
− log |ψ′(z)|

= log
|φ′(ζ)|

1− |φ(ζ)|2
+ log(1 + |ζ|2) ,

where ζ = ψ(z) and φ is the local inverse of ψ such that φ(ζ) = z. We thus notice

that ρ(F z(Hz)) coincides with the support function used by Epstein to obtain quasi-

conformal reflections in the case of dealing just with the Poincaré metric in D. This is

another way of recovering the fact that the quasiconformal extension in the criterion

|{ψ, z}| ≤ 2t

(1− |z|2)2
, 0 ≤ t < 1

is given by letting the best Möbius approximation to ψ at z ∈ D act on the reflected

point −1/z̄.

4.2 Reflections in higher dimensions

We shall study now quasiconformal reflections in higher dimensions. The set-up is

basically the same as before. The n-sphere is thought of as the ideal boundary of

hyperbolic n+ 1-space, and given a support function ρ defined on a domain Ω ⊂ Sn,

we consider the envelope hypersurface Σ to the family of horospheres {H(θ, ρ(θ)) :

θ ∈ Ω}. The reflection Λ = G−1
+ ◦G− across Σ is given by

Λ(θ) =
|dρ|2 − 1

|dρ|2 + 1
θ +

2dρ

|dρ|2 + 1
, (4.2.1)
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where dρ stands for the spherical gradient of ρ, |dρ| for its length in the spherical

metric. It is then easy to see that

dρ =
Λ− (Λ · θ)θ
1− (Λ · θ)

, (4.2.2)

where · is the euclidean inner product (points on Sn are considered as being in Rn+1).

All this can be found in [24].

We want to express dρ in terms of the stereographic coordinate x = S(θ) and the

reflection

w = S ◦ Λ ◦ S−1 .

Let Xi be the vector field on Sn defined by S∗(Xi) = ∂i. Then

dρ(Xi) = dρ ·Xi =
Λ ·Xi

1− (Λ · θ)
.

We now use the equations

Λ ◦ S−1 = S−1 ◦ w = (1 + |w|2)−1(2w1, ..., 2wn, |w|2 − 1)

and

Xi = 2(1 + |x|2)−2(−2x1xi, ..., 1 + |x|2 − 2x2
i , ...,−2xnxi, 2xi)

to obtain

dρ(Xi) =
2xi

1 + |x|2
+ 2

wi − xi
|w − x|2

. (4.2.3)

We thus define

f = ρ ◦ S−1 − log(1 + |x|2) ,

and so (4.2.3) yields

grad f = 2
w − x
|w − x|2

or

w = x+ 2
grad f

|grad f |2
, (4.2.4)

and here grad f stands for the euclidean gradient of f . We want to express the

distortion of w in terms of f . One way to define such a distortion is as follows

(Ahlfors): let Dw be the differential of w, and look at the eigenvalues λ1 ≥ λ2 ≥
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· · ·λn ≥ 0 of the (positive) symmetric matrix (Dw)t(Dw). The map w is said to be

K−quasiconformal if λ1λ
−1
n ≤ K2.

We therefore need to find upper and lower bounds for |Dw(y)|2, where y ∈ Rn

is a unit tangent vector at the point where the differential Dw is being considered.

From (4.2.4),

Dw = I + 2DJ(grad f) ◦H(f) (4.2.5)

where J(x) = x
|x|2 the inversion in Rn. Its differential at the point x is given by

DJ = |x|−4(|x|2I − 2Q(x)) ;

here Q(x) is the symmetric matrix with i, j-component xixj. Note that Q2(x) =

|x|2Q(x) and thus DJ is a conformal matrix such that |DJ | = |x|−2. Also, H(f)

stands for the Hessian of f , and in (4.2.5) DJ is evaluated at x = grad f .

So we have

Dw(y) = y + 2DJ(grad f)(H(f)(y)) .

We now compute

|Dw(y)|2 = 1 + 4|grad f |−4|H(f)(y)|2 + 4〈DJ(grad f)(H(f)(y)), y〉

= 1 + 4|grad f |−4|H(f)(y)|2 + 4〈H(f)(y), DJ(grad f)(y)〉 .

The Schwarzian tensor of f with respect to the euclidean metric is defined so that

the matrix B(f) representing it, is given by

B(f) = H(f)−Q(grad f)− αI ,

where α = 1
n
(∆f − |grad f |2). Thus

〈H(f)(y), y〉 = 〈B(f)(y), y〉+ 〈Q(grad f)(y), y〉+ α

and

|H(f)(y)|2 = |B(f)(y)|2 + |Q(grad f)(y)|2 + α2 + 2〈B(f)(y), Q(grad f)(y)〉

+2α〈B(f)(y), y〉+ 2α〈Q(grad f)(y), y〉
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and

〈H(f)(y), Q(grad f)(y)〉 = 〈B(f)(y), Q(grad f)(y)〉+ |grad f |2〈Q(grad f)(y), y〉

+α〈Q(grad f)(y), y〉 .

With this we obtain

|Dw(y)|2 = 1 + 4|grad f |−4|B(f)(y)|2 + 4|grad f |−4|Q(grad f)(y)|2

+4|grad f |−4(2α + |grad f |2)〈B(f)(y), y〉+ 4α|grad f |−2

+4α2|grad f |−4 − 4|grad f |−2〈Q(grad f)(y), y〉

= (1 + 2α|grad f |−2)2 + 4|grad f |−4(|B(f)(y)|2 + β〈B(f)(y), y〉)

+4|grad f |−4(|Q(grad f)(y)|2 − |grad f |2〈Q(grad f)(y), y〉) ,

where

β = 2α + |grad f |2 =
2

n
∆f + (

n− 2

n
)|grad f |2 .

Using the fact that

|Q(grad f)(y)|2 = 〈Q(grad f)(y), Q(grad f)(y)〉

= 〈Q2(grad f)(y), y〉

= |grad f |2〈Q(grad f)(y), y〉 ,

we finally get

Proposition 4.2.1 With the notation as before, the differential of the reflection w

satisfies

|Dw(y)|2 = 4|grad f |−4|A(y)|2

where A is the matrix given by

A =
1

2
βI +B(f) .

On the other hand, the scalar curvature of the metric ĝ = e2fg0 is given by

scal(ĝ) = −n(n− 1)e−2fβ ,
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and the norm of the tensor Bg0(f) in the metric ĝ is given by e−2f ||B(f)||g0 . Therefore,

if

||Bg0(f)||ĝ ≤
t

2

|scal(ĝ)|
n(n− 1)

for some 0 ≤ t < 1, then

(1− t)|β||grad f |−2 ≤ |Dw(y)| ≤ (1 + t)|β||grad f |−2 . (4.2.6)

Hence for |β||grad f | 6= 0, the reflection w will be K- quasiconformal with K = 1+t
1−t .

We consider now a conformal local diffeomorphism ψ : (M, g)→ (Sn, g1). We have

seen that if M = Sn, then all such mappings ψ are just Möbius transformations. On

the other hand, a large class of nontrivial maps ψ of this kind arise as the developing

maps of locally conformally flat manifolds [50]. If

||Sg(ψ)|| ≤ 2π2

δ2
− 1

2

scal(g)

n(n− 1)
,

then ψ is a global diffeomorphism and with φ = ψ−1, we can define the metric

g2 = e2ρg1 = φ∗(g) on Ω = ψ(M). As in the 2-dimensional case, the idea is to

analyze the reflection Λ determined by Ω and the support function ρ. Using conformal

invariance, we state now the following version of Theorem 3.3.2:

Theorem 4.2.1 Let Ω ⊂ Sn be a domain with a complete metric g2 = e2ρg1. If

||Bg1(ρ)||g2 ≤ −
1

2

scal(g2)

n(n− 1)

then Ω is simply-connected.

Remarks

(1) The last inequality implicitly says that scal(g) ≤ 0.

(2) One does not quite require that g2 be complete, but rather that any two points

in Ω can be joined (in Ω) by a geodesic in the metric g2.

(3) This theorem is sharp, as can be verified by taking in the plane the ringR1 < |z| < R2

with its Poincaré metric. This metric satisfies the inequality

||Bg1(ρ)||g2 ≤ −(1 + ε)
1

2

scal(g2)

2
,
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where ε =
(

log(R2/R1)
π

)2
can be made arbitrarily small.

Proof: Let Ω̃ be the universal cover of Ω with covering map π and metric g̃ =

π∗(g2). We consider π as a conformal map from (Ω̃, g̃) into (Sn, g1). Then, under the

hypothesis of the theorem, one has

||Sg̃(π)||g̃ ≤ −
1

2

scal(g̃)

n(n− 1)
,

which by Theorem 3.1.2 implies the univalence of π and consequently, our theorem.

We go back to the reflection Λ. We have shown that when scal(ĝ)|grad f | 6= 0,

the reflection Λ across Σ has a distortion bounded by 1+t
1−t , where

t =
2n(n− 1)

scal(ĝ)
||Bg0(f)||ĝ .

The metrics ĝ and g2 are isometric under the stereographic projection S, and further-

more we claim that

||Bg0(f)||ĝ = ||Bg1(ρ)||g2 .

This follows from the addition formula, as:

0 = Bg0(f − f) = Bg0(f) +Be2fg0(−f) .

But

Be2fg0(−f) = (S−1)∗(Be2ρg1(−ρ)) = −(S−1)∗(Bg1(ρ)) .

Hence

Bg0(f) = (S−1)∗(Bg1(ρ))

and thus our claim follows.

On the other hand, Epstein has shown that this distortion equals

max
i 6=j

∣∣∣∣∣(1 + ki
1− ki

)(
1− kj
1 + kj

)

∣∣∣∣∣ ,
where k1, ..., kn are the principal curvatures at the corresponding point p = G−1

+ (θ)

on Σ.
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We want to conclude that |ki| < 1 for all i. To that effect, we will need to impose

that the metric g2 be negatively curved. This will replace the apparently awkward

condition |β||grad f | 6= 0. We shall show that the assumption on the curvatures of

g2 together with the inequality

||Bg1(ρ)||g2 ≤ −
t

2

scal(g2)

n(n− 1)

for some 0 ≤ t < 1, imply the sought estimate of the principal curvatures of Σ.

Following the work of Epstein, let Σs be the forward parallel hypersurface to Σ

at distance s. The hyperbolic metric gs on Σs, suitably normalized, converges as

s → ∞ to the metric g2 on Ω [22]. The normalized sectional curvatures tend to

(kikj − 1)(1 − ki)−1(1 − kj)−1, and therefore (kikj − 1)(1 − ki)(1 − kj) < 0. Hence

ki 6= 1 for all i. On the other hand, the principal directions of Σ and Σs are mapped

to each other under the parallel flow, which enables one to compute the differential

of Λ. In particular, its determinant is given by

−
n∏
i=i

(
1 + ki
1− ki

) ,

where 1+ki
1−ki is the eigenvalue of dΛ corresponding to the principal direction i. Since Λ

reverses orientation, we conclude that

n∏
i=1

(1− k2
i ) ≥ 0 .

We claim that this inequality is strict. Indeed, if not, then since we have already

excluded the case ki = 1, we must have ki = −1 for some i. Because ki 6= 1, dΛ

does not have an infinite eigenvalue and therefore |grad f | 6= 0 in (4.2.6). Hence the

distortion is finite and we see from Epstein’s formula that kj = −1 for some j 6= i.

This contradicts the fact that (kikj − 1)(1 − ki)(1 − kj) < 0. This proves the claim,

which now implies that #{i : |ki| > 1} is even. If this number is not zero, then say

|k1|, |k2| > 1. But then (k1k2 − 1)(1 − k1)(1 − k2) > 0, again a contradiction. Thus,

|ki| < 1 for all i, and therefore all the sectional curvatures of Σ are negative.

We now prove



CHAPTER 4. QUASICONFORMAL REFLECTIONS 62

Lemma 4.2.1 If ρ(θn)→∞ for any sequence {θn} in Ω converging (in the spherical

metric) to a point in ∂Ω, then Σ is complete.

Proof: Suppose γ(t) is a unit speed curve in Σ defined on [0,1) which cannot be

extended continuously to t = 1 in Σ. Then the curve G+(γ(t)) in Ω will have to tend

to ∂Ω, hence ρ → ∞ along it. But then by construction of Σ as the envelope of the

horospheres H(θ, ρ(θ)), we will have γ(t) of infinite length, a contradiction.

Remark The hypothesis of the lemma will hold if, for instance, g2 is a complete

metric on Ω.

With this we conclude

Theorem 4.2.2 Let g2 have negative curvature and assume that ρ→∞ near ∂Ω. If

for some t ∈ [0, 1)

||Bg1(ρ)||g2 ≤ −
t

2

scal(g2)

n(n− 1)

then Ω is diffeomorphic to Rn.

Proof: The hypersurface Σ is complete with principal curvatures |ki| < 1, and there-

fore the forward Gauss map G+ : Σ → Ω is a diffeomorphism. Hence Σ is simply-

connected and by the Cartan-Hadamard theorem, it is diffeomorphic to Rn. This

proves the result.

We now state the main result in this section.

Theorem 4.2.3 Let (M, g) be a complete Riemannian n-manifold of negative curva-

ture, and let ψ : (M, g)→ (Sn, g1) be a conformal local diffeomorphism such that for

some t ∈ [0, 1)

||Sg(ψ)|| ≤ − t
2

scal(g)

n(n− 1)
.

Then ψ is univalent and M diffeomorphic to Rn. Furthermore, there exists a 1+t
1−t-

quasiconformal diffeomorphism Λ of Sn onto itself, which takes the topological hemi-

sphere Ω = ψ(M) to Sn/Ω̄ and which fixes ∂Ω.
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Remark Since g is complete, so is the metric g2, but the proof of the theorem only

requires that ρ becomes infinite near ∂Ω.

Proof: The univalence of ψ follows from Theorem 3.1.2 and Theorem 3.3.2 implies

that M is simply-connected. Hence, by the Cartan-Hadamard theorem, M is diffeo-

morphic to Rn. The stated inequality on Sg(ψ) translates to

||Bg1(ρ)||g2 ≤ −
t

2

scal(g2)

n(n− 1)
,

and the remaining conclusions follow from the previous considerations on Λ.

Finally, we use the language of conformal geometry to give the following analytic

characterization of quasidiscs in the plane.

Theorem 4.2.4 Let Ω ⊂ R2 be a domain and let g = e2fg0 be a complete metric of

negative Gaussian curvature k(g). If for some t ∈ [0, 1)

||Bg0(f)||g ≤ −
t

2
k(g) (4.2.7)

then Ω is a quasidisc.

Remarks

(1) By Theorem 4.2.1, if the last inequality holds for t = 1, then one can only conclude

that Ω is simply-connected.

(2) As in Theorem 4.2.1, one does not relly need g to be complete, but in this case

the slightly weaker condition that the conformal factor f → ∞ near ∂Ω, and that

any two points in Ω can be joined by a geodesic in the metric g.

Proof: This theorem is implicit in the work of Epstein in [22], but never stated in this

intrinsic form. The function f , considered as a support function on Ω, determines a

complete surface Σ in hyperbolic 3-space. By (4.2.7), which translates to

|fzz − f 2
z | ≤ tfzz̄ ,

and the fact that k(g) < 0, one sees from the argument presented from [22] that the

principal of Σ are bounded in absolute value by 1. Then ∂Ω is the fixed point set of

the associated quasiconformal reflection, which implies the result.
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Applications

5.1 Injectivity criterion for conformal immersions

In this section we will derive a sufficient condition for the conformal immersion of a

Riemannian manifold into euclidean space to be an embedding. This will be done

along the lines of the proof of the theorem of Osgood and Stowe, the main additional

element being the study of the restriction to an n-dimensional submanifold of Rm of

positive solutions to Hess(u) = ∆u
m
g0. To that extent, we consider first the general

case. Let M be an m-dimensional Riemannian manifold with metric g, and S an

n-dimensional submanifold of M . Let ∇ denote the Levi-Cevita connection in M and

∇̂ the one for S in the induced metric. Then for X, Y tangent to S one has

∇XY = ∇̂XY + s(X, Y ) ,

where s is the second fundamental form of S. Let u be a positive function on M and

let v = − log u. Then,

Hess(u)− ∆u

m
g = −uBg(v) .

We will denote by ˆ the corresponding quantities on S. At a point x ∈ S, grad u

decomposes uniquely in tangent and normal directions to S, as

grad u = Tu +Nu ,

with similar notation for v.

64
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Finally, let H be the mean curvature vector of S, i.e.,

H =
n∑
i=1

s(Xi, Xi) ,

where {X1, ..., Xn} is an orthonormal basis for TxS.

Lemma 5.1.1 With the notation as above,

uBg(v)− uB̂g(v) = g(Nu, s−
H

n
g) +

u

n

(
n∑
i=1

Bg(v)(Xi, Xi)

)
g .

This should be understood as a tensor equality on S.

Proof: We compute first ˆHess(u). By definition,

Ĥess(u)(X, Y ) = g(∇̂XTu, Y ) = g(∇XTu − s(X,Tu), Y )

= g(∇XTu, Y ) = g(∇Xgrad u−∇XNu, Y )

= Hess(u)(X, Y ) + g(Nu,∇XY )

= Hess(u)(X, Y ) + g(Nu, s(X, Y )) ,

that is,

Ĥess(u) = Hess(u) + g(Nu, s) .

Now,

−uB̂g(v) = Ĥess(u)− ∆̂u

n
g

= Hess(u) + g(Nu, s)

− 1

n

n∑
i=1

Hess(u)(Xi, Xi)−
1

n
g(Nu, H)g ,

and since

−uBg(v) = Hess(u)− ∆u

m
g ,

we get

−uB̂g(v) = Hess(u)− 1

n

(
−

n∑
i=1

uBg(v)(Xi, Xi) +
n

m
∆u

)
g

+g(Nu, s−
H

n
g) .
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This gives the result.

The important application of this lemma will be when Bg(v) = 0, in which case

we have

B̂g(v) = g(Nv, s−
H

n
g) .

This shows, for example, that B̂g(v) also vanishes if S is totally umbilic.

Let now ψ be a conformal immersion of an n-dimensional manifold (M, g) into

(Rm, g0), with ψ∗(g0) = e2ϕg. Let x and y in M be two given points joined by a

geodesic γ of length < δ. Let T be the unit tangent vector to γ. We want to establish

a criterion under which ψ(x) 6= ψ(y). Following the proof in [42] we consider the

function

w = e−ϕ(u ◦ ψ) ,

where

u(p) = |p− ψ(x)|2

is the square of the euclidean distance to the point ψ(x). The important features of

u are: u(p) > 0 unless p = ψ(x), and Hess(u) = ∆u
m
g0, i.e., Bg0(− log u) = 0. Hence

the function w vanishes at x, and in order to guarantee that it does not vanish at y,

we will require w to satisfy a certain differential inequality along γ. Differentiation

along this curve will be denoted by ′. Then

w′′ = Hess(w)(T, T ) = −wBg(− logw)(T, T ) +
1

n
∆w , (5.1.1)

and

Bg(− logw) = Bg(ϕ− log(u ◦ ψ))

= Bg(ϕ) +Be2ϕg(− log(u ◦ ψ))

= Bg(ϕ) + ψ∗(B̂g0(− log u))

= Bg(ϕ) + ψ∗(B̂g0(v)) . (5.1.2)

Here, ˆ denotes local computations on ψ(M) with the induced metric. Let k and

k̂ be (n(n− 1))−1 times the scalar curvatures of g and w−2g respectively. Then

k̂ = w2

(
k +

2

n

∆w

w
− |grad w|

2

w2

)
, (5.1.3)
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hence
1

n
∆w =

w

2

(
−k + w−2k̂ +

|grad w|2

w2

)
. (5.1.4)

The inequality that we shall require is

w′′ ≥ −2π2

δ2
w +

1

2

(w′)2

w
, (5.1.5)

which can be written as

(w
1
2 )′′ ≥ −π

2

δ2
(w

1
2 ) . (5.1.6)

If this is satisfied, a standard Sturm comparison theorem will then guarantee that

w does not vanish at y. Using equations (5.1.1), (5.1.2) and (5.1.4), we can rewrite

(5.1.5) as

−2π2

δ2
w +

1

2

(w′)2

w
≤ −wBg(ϕ)(T, T )− wB̂g0(ψ∗(T ), ψ∗(T ))

+
w

2

(
−k + w−2k̂ +

|grad w|2

w2

)
.

This last inequality will hold if

Bg(ϕ)(T, T ) +Bg0(v)(ψ∗(T ), ψ∗(T )) ≤ 2π2

δ2
+

1

2
(w−2k̂ − k) . (5.1.7)

We already have a more explicit expression for B̂g0(v)(ψ∗(T ), ψ∗(T )) as in the

remark after the lemma, and now we want to derive another way of writing w−2k̂.

The metric w−2g is (locally) isometric to u−2g0 restricted to ψ(M). We point out

that this last metric has a geometric interpretation: indeed, u−2g0 = F ∗(g0), where

F is the Möbius inversion in Rm given by

F (p) =
p− ψ(x)

|p− ψ(x)|2
.

Hence, at a point z ∈M , k̂ equals (n(n−1))−1 times the scalar curvature of F (ψ(M))

at F (ψ(z)) in the induced metric. Let k1 be (n(n− 1))−1 times the scalar curvature

of ψ(M) in the induced mertic. Then

k̂ = u2

(
k1 +

2

n

∆̂u

u
− |Tu|

2

u2

)
,
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where the left-hand side is at z and the right-hand side at ψ(z). As before, ∆̂ will

denote the Laplacian on ψ(M).

As shown before,

Ĥess(u) = Hess(u) + g0(Nu, s)

=
∆u

m
g0 + g0(Nu, s)

= 2g0 + g0(Nu, s)

since ∆u = 2m. Thus

∆̂u = 2u+ g0(Nu, H) .

On the other hand, grad u = Tu +Nu, therefore

|Tu|2 = |grad u|2 − |Nu|2 = 4u− |Nu|2 .

So we obtain

k̂ = u2

(
k1 +

4

u
+

2

u
g0(Nu,

H

n
)− 4u− |Nu|2

u2

)
,

or equivalently

k̂ = u2

(
k1 +

2

u
g0(Nu,

H

n
) +
|Nu|2

u2

)
. (5.1.8)

Notice that the term u−1|Nu| causes no trouble, since it remains bounded near ψ(x).

Theorem 5.1.1 With the notation as above, if along the geodesic γ

Bg(ϕ)(T, T ) + e2ϕg0(Nv, s(T1, T1)) ≤ 2π2

δ2
+

1

2
(e2ϕk1 − k + e2ϕ|Nv|2) (5.1.9)

then ψ(x) 6= ψ(y). Here, T1 = e−ϕψ∗(T ).

Proof: From the remark after the lemma, we have

B̂g0(ψ∗(T ), ψ∗(T )) = g0

(
Nv, s(ψ∗(T ), ψ∗(T )− e2ϕ

n
H)

)

= e2ϕg0

(
Nv, s(T1, T1)− 1

n
H
)
,

and after this, (5.1.9) follows from equations (5.1.7) and (5.1.8).

An important case in which (5.1.9) simplifies, is when the immersion is isometric.

Then ϕ vanishes identically and k1 = k, which leads to
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Theorem 5.1.2 With the notation as before, if the immersion ψ is isometric and if

along the geodesic γ

g0(Nv, s(T1, T1)) ≤ 2π2

δ2
+

1

2
|Nv|2 (5.1.10)

then ψ(x) 6= ψ(y).

At this point we want to present two sharp applications of these theorems. First,

we consider the inverse of the stereographic projection, ψ : Rn → Sn ⊂ Rn+1. Here,

ϕ = − log(1 + |x|2) for x ∈ Rn. This embedding is Möbius, that is, Bg0(ϕ) = 0. Also,

k = 0 and k1 = 1. Since Sn is totally umbilic,

g0(Nv, s(N1, N1)) ≤ |Nv|

and we see that by letting δ =∞, equation (5.1.9) will be satisfied for any two points

in Rn. In other words, a Möbius immersion of Rn into euclidean space as a totally

umbilic submanifold of constant scalar curvature is necessarily an embedding.

As a second example, we look at the isometric immersion of R2 as a cylinder of

radius r in R3. We imagine the y-axis in R2 as staying fixed, while the x-direction is

rolled over to form the cylinder. In the y-direction, (5.1.10) is satisfied with δ = ∞,

whereas in the x-direction, we shall show that (5.1.10) will hold as long as δ ≤ 2πr.

Indeed, it suffices to consider the case when u(p) = |p|2 in R3. Let N be the inward

normal to the cylinder. Then

s(T1, T1) =
N

r
,

and a simple calculation yields

Nv = −Nu

u
=
N

r
.

Thus
1

r2
= g0(Nv, s(T1, T1)) ≤ 2π2

δ2
+

1

2
|Nv|2 =

2π2

δ2
+

1

2r2

only if δ ≤ 2πr.
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5.2 The complex analytic case

In this section, we shall discuss Theorem 5.1.1 in the complex analytic case. This will

mainly involve a few calculations. As before, let D be the open unit disc in the plane

and let ψ : D → Cn be holomorphic. Then ψ is conformal and ψ∗(g0) = e2ϕg0 with

ϕ =
1

2
log(|ψ′1|2 + · · ·+ |ψ′n|2) ,

where ψ = (ψ1, ..., ψn) and ′ denotes differentiation with respect to z ∈ D.

We write (5.1.9) as

Bg0(ϕ)(T, T ) + e2ϕg0

(
Nv, s(T1, T1)− 1

2
Nv

)
≤ 2π2

δ2
+

1

2
(e2ϕk1 − k) ,

and here, δ = 2, k = 0 and e2ϕk1 = −∆ϕ. We will now compute ∆ϕ and the norm

||Bg0(ϕ)||g0 . Using

∆ϕ = 4ϕzz̄

and the holomorphicity of ψ, one finds that

∆ϕ = 2e−4ϕ
∑
i<j

|ψ′iψ′′j − ψ′′i ψ′j|2 .

On the other hand, it is easy to verify that

||Bg0(ϕ)||g0 = 2|ϕzz − ϕ2
z| ,

and after a computation one arrives at

ϕzz − ϕ2
z =

1

4
e−4ϕ

{
2(
∑
i

|ψ′i|2)(
∑
i

ψ′iψ̄
′′′
i )− 3(

∑
i

ψ′′i ψ̄
′
i)

2

}
.

If λ is a pointwise upper bound for the second fundamental form s of the surface

ψ(D), that is, |s(X, Y )| ≤ λ for all unit tangent vectors X, Y at a given point ψ(z),

then we can rewrite equation (5.1.9) to obtain

Theorem 5.2.1 If

1

2
e−4ϕ

∣∣∣∣∣2(
∑
i

|ψ′i|2)(
∑
i

ψ′′′i ψ̄
′
i)− 3(

∑
i

ψ′′i ψ̄
′
i)

2

∣∣∣∣∣
+e−4ϕ

∑
i<j

|ψ′iψ′′j − ψ′′i ψ′j| ≤
π2

2
+

1

2
e2ϕ(|Nv|2 − 2λ|Nv|)

then ψ is univalent.
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Finally, we mention that one can use our theorem in a similar way as a univalence

criterion for Cm-valued holomorphic maps defined on domains in Cn or for that

matter, on any n-dimensional complex manifold M . In fact, given x, y ∈ M and

assuming that they can be joined in M by a complex line, one only needs to consider

the restriction of ψ to such curve.

5.3 Nonpositively curved target manifold

There are two important features about the test function u in the proof of the theorem

of Osgood and Stowe which gives their result a very neat and concise statement. They

are that the Hessian of u is diagonal and that the metric u−2g0 is flat. The purpose of

this last section is to derive an analogous injectivity criterion when the target manifold

(N, ĝ) is complete, simply-connected and nonpositively curved. As in the euclidean

case, we will use as a test function u, the square of the distance to a given point.

There is no hope that in this generality u−2ĝ will be flat, but one can nevertheless

obtain relatively simple expressions relating the curvatures of ĝ and u−2ĝ. On the

other hand, the size of Hess(u)−∆u
n
ĝ can be estimated by using comparison theorems.

We will start with the pertinent computations to bound this last quantity.

Throughout this section, (N, ĝ) will be a complete, simply-connected n-dimensional

Riemannian manifold with nonpositive sectional curvatures K, −a2 ≤ K ≤ 0. Let

u denote the square of the distance to a given point p ∈ N . Then u is smooth and

everywhere positive, except at one point (where it vanishes). The main estimate we

need is

Proposition 5.3.1

Hess(u)(X,X)− 1

n
∆u ≥ 2(n− 1)

n

(
1− (

a

2
)(

1 + v2

v
)u

1
2

)
, (5.3.1)

where X is a unit tangent vector and v is related to u by the equation

u
1
2 =

1

a
log

1 + v

1− v
.
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Proof: On euclidean space, the Hessian of the square of the distance to a given point

equals twice the euclidean metric. Hence in our case, by the Hessian comparison

theorem ([18], [28]),

Hess(u)(X,X)− 1

n
∆u ≥ 2− 1

n
∆s2 , (5.3.2)

where s is the distance function in hyperbolic space of constant curvature −a2. To

compute its (hyperbolic) Laplacian, we shall use the ball model Bn with metric g =

e2ϕg0, where

ϕ = log
A

1− |x|2
, A =

2

a
.

We have

Hess(s2) = 2sHess(s) + 2ds⊗ ds ,

and from the formula on how the covariant derivative changes under a conformal

change of metric, we find that

Hess(s) = Hess0(s)− dϕ⊗ ds− ds⊗ dϕ+ g0(grad0 s, grad0 ϕ)g0 .

The subindex refers to computations in the euclidean metric g0.

We can assume that the base point of s is the origin, and so

s =
∫ |x|

0
eϕ(t)dt =

1

a
log

1 + |x|
1− |x|

.

The vectors grad0s and grad0ϕ are parallel, and an easy computation shows that

g0(grad0 s, grad0 ϕ) =
4

a

|x|
(1− |x|2)2

.

Therefore,

Hess(u) = 2sHess0(s)− 2sds⊗ dϕ− 2sdϕ⊗ ds+
8s

a

|x|
(1− |x|2)2

g0 + 2ds⊗ ds .

We now take trace in the metric g to conclude

∆u = 2se−2ϕ∆0s− 4se−2ϕ|grad0 s||grad0 ϕ|+ 2nas|x|+ 2e−2ϕ|grad0 s|2 ,
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where the norms of the gradients are euclidean. The terms left to compute are the

euclidean Laplacian of s and |grad0 s|2. This last one is

|grad0 s|2 =
4|x|2

(1− |x|2)2
,

and another simple calculation yields

∆0s =
2n

(1− |x|2)2
+

2(2− n)|x|2

(1− |x|2)2
.

With this we finally obtain after some simplifications

∆u = 2 + (n− 1)as
1 + |x|2

|x|
.

Inserted in equation (5.3.2), this gives the proposition.

It is not difficult to see that the right-hand side of (5.3.1) is O(u) near the point

p and O(u
1
2 ) when u is large. Such a behavior will matter at the end.

Let now (M, g) be an n-dimensional manifold and ψ : M → N a conformal local

diffeomorphism. As mentioned before, we shall derive a sufficient condition for the

global univalence of ψ. Let ψ∗(ĝ) = e2ϕg and set

w = e−ϕ(u ◦ ψ) .

Hence ψ∗(u−2ĝ) = w−2g, and we will need to relate to each other the scalar curvatures

of the involved metrics. Let k, k̂ and k′ denote respectively (n(n − 1))−1 times the

scalar curvature of g, ĝ and u−2ĝ (w−2g). Then

k′ = u2(k̂ +
2

n

∆ĝu

u
−
|gradĝ u|2ĝ

u2
ĝ)

= w2(k +
2

n

∆gw

w
−
|gradg w|2g

w2
g) , (5.3.3)

where when computing quantities on M and N , they are to be evaluated respectively

at x ∈M and ψ(x) ∈ N . For once, we have used metric subindices, but we shall drop

them in the subsequent, with the convention that metric dependent quantities on M
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are computed in g and those in N , in ĝ. From (5.3.3) we get

1

n

∆w

w
=

1

2
(
|grad w|2

w2
− k)

+
1

2

u2

w2
(k̂ +

2

n

∆u

u
− |grad u|

2

u2
) . (5.3.4)

Now, u2w−2 = e2ϕ and furthermore, we claim that

2

n

∆u

u
≥ |grad u|

2

u2
.

Indeed, since N is nonpositively curved, by the comparison theorems we have

∆u ≥ n .

On the other hand, u = s2, hence

|grad u|2 = |2sgrad s|2 = 4s2 .

Therefore
|grad u|2

u2
=

4

u

and the claim follows. So,

1

n

∆w

w
≥ 1

2

|grad w|2

w2
− 1

2
k +

1

2
e2ϕk̂ . (5.3.5)

The procedure now is essentially the same as in section 5.1. Let x, y ∈ M be

joined by a geodesic γ of length < δ ≤ ∞. Let the base point p of the function u be

ψ(x). Then w vanishes at x and ψ(x) 6= ψ(y) iff w(y) 6= 0. Therefore, an injectivity

criterion can be formulated as a differential inequality of w on γ that will ensure the

nonvanishing of w before time δ. By the addition formula,

Bg(− logw) = Bg(ϕ− log(u ◦ ψ))

= Bg(ϕ) +Be2ϕg(− log(u ◦ ψ))

= Bg(ϕ) + ψ∗(Bĝ(− log u)) ,

and by (1.2.9),

Hess(u)− ∆u

n
ĝ = −uBĝ(− log u) .
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So we obtain

Bg(− logw) = Bg(ϕ)− 1

u(ψ)
ψ∗(Hess(u)− ∆u

n
ĝ) . (5.3.6)

Let T be the unit tangent along γ oriented from x to y. Then

w′′ = Hess(w)(T, T ) =
∆w

n
− wBg(− logw)(T, T )

=
∆w

n
− wBg(ϕ)(T, T ) +

w

u(ψ)

(
Hess(u)(ψ∗(T ), ψ∗(T ))− e2ϕ∆u

n

)
=

∆w

n
− wBg(ϕ)(T, T ) + e2ϕ(Hess(u)(X,X)− ∆u

n
) ,

where we have written ψ∗(T ) as eϕX. As in section 5.1, the differential inequality to

be satisfied is

w′′ ≥ −2π2

δ2
w +

1

2

(w′)2

w
,

which can be written as

(w
1
2 )′′ ≥ −π

2

δ2
w

1
2 . (5.3.7)

The function w satisfies w(x) = 0 and w > 0 near x, therefore if equation (5.3.7)

holds, a Sturm comparison theorem will guarantee that w cannot vanish at y. Using

the estimates (5.3.1) and (5.3.5), we conclude

Theorem 5.3.1 With the notation as before, if along the geodesic γ

Bg(ϕ)(T, T )− 2(n− 1)

n

e2ϕ

u(ψ)

(
1− 1

a

(
1 + v2

v

)
u

1
2

)
(ψ) ≤

2π2

δ2
− 1

2
k +

1

2
e2ϕk̂(ψ) (5.3.8)

then ψ(x) 6= ψ(y).

We make a few concluding remarks. It is not difficult to verify that

1

u(ψ)

(
1− 1

a
(
1 + v2

v
)u

1
2

)
(ψ) ≤ 0 ,

so in the left-hand side this term contributes as a positive quantity. Nevertheless,

near x it is bounded and tends to 0 as u(ψ) → ∞. The map ψ will be a global

diffeomorphism if (5.3.8) holds for all pairs x, y as before.
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Finally, one could put together the results of this section and of section 5.1 to

derive an injectivity criterion for the conformal immersion of an arbitrary manifold

M into a higher dimensional complete and simply-connected nonpositively curved

manifold N . This is so, because by using the results in section 5.1 we can relate in

the target N the function u = dist2( , p) to its restriction to the (local) submanifold

ψ(M). The appropriate estimates for the corresponding operators on u can be derived

from Proposition 5.3.1.
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